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Preface

This book provides comprehensive and clear coverage of deep learning, which has

transformed the field of artificial intelligence. The book is distinctive in that it

uses a unified notation, high-quality illustrated figures and the most up-to-date

material in the field, and is accompanied by hundreds of code samples, exercises,

and solutions on each topic, automatically generated by program synthesis. The

Science of Deep Learning emerged from courses taught by the author in the past

five years that have provided thousands of students with training and experi-

ence for their academic studies, and prepared them for careers in deep learning,

machine learning, and artificial intelligence in leading companies in industry

and academia. The motivation for the book is to provide a guide to the field

built upon clear visualizations using a unified notation and equations. The con-

tent is self-contained, using a unified language so that students, teachers, and

researchers in academia and industry can use the book without having to over-

come the barriers to entry of the specific language and notation of each topic.

Introductory topics are represented using both basic linear algebra and graphs

simultaneously, along with the corresponding algorithms.

Coverage

The material is presented in five main parts:

1. Part I, on the foundations of deep learning, includes Chapters 1–4, which

covers core deep learning material on forward and backpropagation, opti-

mization, and regularization.

2. Part II, on deep learning architectures, includes Chapters 5–8. This covers

key architectures including convolutional neural networks (CNNs), recur-

rent neural networks (RNNs), long short-term memory (LSTMs), gated

recurrent units (GRUs), graph neural networks (GNNs), and Transform-

ers.

3. Part III, on generative models, comprises Chapters 9 and 10, which cover

generative adversarial networks (GANs) and variational autoencoders (VAEs).

4. Part IV addresses reinforcement learning and deep reinforcement learning

(Chapters 11 and 12).

5. Part V, on applications (Chapter 13), covers a broad range of deep learning
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applications, which are also distributed among the chapters by topic and

relevance.

6. Appendices provide equations for computing gradients in backpropagation

and optimization, and best practices in scientific writing and reviewing.

Contribution

The book contributes to the literature in the field in that it uses rigorous math

with a unified notation. In addition, over the past five years, during the course

of instruction, advanced topics have been simplified to become part of the core,

while bringing in new topics in the field as advanced topics. The key advantages of

this book are that it is up-to-date, with the latest advances in the field including

unique content; the math is rigorous, using a unified notation; and the book

presents comprehensive algorithms and uses high-quality figures.

Audience and Prerequisite Knowledge

The book is intended for students and researchers in academia and industry, as

well as lecturers in academia. The book is primarily intended for computer sci-

ence undergraduate and graduate students, as well as advanced PhD students.

This book has been used for teaching students mainly in computer science, elec-

trical engineering, data science, statistics, and operations research. The required

background is linear algebra and calculus. Optional background is machine learn-

ing and programming experience. The book is also applicable for a wide audience

of students pursuing degrees in STEM fields with the required background. The

book is useful for researchers in academia and industry, as well as data scientists

and algorithm developers of artificial intelligence. Finally, the book may be used

by lecturers in academia for teaching a course on deep learning, and chapters

may be used in teaching topics in courses on machine learning, data science, op-

timization, and reinforcement learning at the undergraduate and graduate levels.

Usage

The first four parts of the book have been used as a textbook in courses on deep

learning. The third part, on generative models, may be used as part of a course

on unsupervised learning. The fourth part may be used as part of a course on

reinforcement learning or deep reinforcement learning. Appendix A is useful for

computing the gradients in backpropagation and optimization. Appendix B may

be used in project-based courses for providing best practices in scientific writing

and reviewing.
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1 Introduction

In the fifteenth century, the printing press revolutionized the world by overcoming

the genomic bottleneck that allows for only two billion characters of our DNA to

be passed on from generation to generation. The printed text allows for unlimited

knowledge to be passed on between generations.

A common distinction between the capabilities of humans and machines is that

humans are generalists and machines are specialists. The deep learning revolution

has resulted in many specialized machine learning systems with super-human

capabilities under the title AlphaX. A few noteworthy examples are AlphaGo

(Silver et al., 2016) for playing Go, AlphaZero (Silver et al., 2017) for playing

chess, AlphaHoldem (Zhao et al., 2022) for playing poker, AlphaD3M (Drori,

Krishnamurthy, Rampin, Lourenco, One, Cho, Silva and Freire, 2018) for auto-

mated machine learning, AlphaStock (Wang, Zhang, Tang, Wu and Xiong, 2019)

for trading stocks, AlphaStar (Vinyals et al., 2019) for playing multi-player strat-

egy games, AlphaDogfight (Pope et al., 2021) for flying fighter jets, AlphaFold

(Jumper et al., 2021) for protein structure prediction, and AlphaCode (Li et al.,

2022) for competition-level code generation.

In contrast, recent deep learning Transformers, also called foundation models,

trained with one trillion parameters, are generalists. Consider the task of learning

a university-level course. A human may learn at most a few hundred courses with

great effort during an entire lifetime, whereas a foundation model is soon able

to learn all courses in days with super-human performance. Understanding such

a machine is very different from that of a human.

Deep learning and artificial intelligence (AI) are revolutionizing the world

again in the twenty-first century by overcoming the human perception of reality,

which is limited by our brains and senses. Machines are revealing to humans

insights and new understandings of reality, in which, by comparison, individual

human capabilities are mundane.

1.1 Deep Learning

Deep learning is narrowly defined as optimizing neural networks that have many

layers. In the broader sense, deep learning encompasses all methods, architec-

tures, and applications involving neural network representations. Deep neural
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networks are inspired by neurons and their connections in the brain. The back-

propagation algorithm is the most commonly used approach for optimizing deep

neural networks. Backpropagation is based on computing gradients of a loss func-

tion using the chain rule in reverse mode differentiation. Backpropagation and

gradient-based methods for optimizing neural networks are very different from

biological learning mechanisms in the brain. Deep neural networks may also be

optimized using genetic algorithms or Hebbian learning rules, which are inspired

by learning in biological neural networks. This book focuses on the broad defi-

nition of deep learning, encompassing methods, architectures, and applications

that use neural network representations optimized using backpropagation.

1.2 Outline

The book is divided into five parts: (1) Foundations, (2) Architectures, (3) Gen-

erative Models, (4) Reinforcement Learning, and (5) Applications.

1.2.1 Part I: Foundations: Backpropagation, Optimization, and Regularization

Part I, Foundations, consists of three chapters. Chapter 2 defines neural networks

and presents forward propagation and backpropagation. Neural networks are de-

fined as a composition of functions consisting of a linear and a non-linear part.

The chapter defines the network inputs, pre-activations, non-linear activation

functions, activation units, and outputs. These are used to introduce forward

propagation in neural networks. Next, the chapter presents loss functions and

their gradients, derivatives of non-linear activation functions, and the chain rule.

These are used to explain backpropagation in a neural network, which is the

cornerstone of training neural networks by gradient descent. Multiple examples

illustrate the algorithms and provide the backpropagation derivations using the

chain rule in reverse mode differentiation. Finally, the chapter presents initializa-

tion and normalization strategies for neural networks and the key deep learning

software libraries and platforms.

Chapter 3 presents optimization in deep learning, focusing on gradient descent

which iteratively finds a local minimum by taking steps in the direction of the

steepest descent. Three main problems with training neural networks using gra-

dient descent and their solutions are discussed: (1) the total loss function with

respect to the neural network weights, which is a sum of many individual losses

for many samples – the solution is mini-batch or stochastic gradient descent;

(2) the derivative of the total loss, which is computed with respect to all of

the network weights – the solution is backpropagation; and (3) the directions

of gradients for consecutive time steps which follow optimized step sizes are or-

thogonal, forming a zig-zag pattern, which is slow, especially in flat regions. The

solution is adaptive gradient descent methods that use previous gradients to de-

termine the step size. Next, the chapter presents second-order methods, including
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practical quasi-Newton approaches. Finally, the chapter discusses gradient-free

optimization approaches such as evolution strategies.

Chapter 4 presents regularization as a technique that can be used to prevent

overfitting and explains generalization, bias, and variance. The chapter presents

three methods for regularization: (1) adding a penalty term to the cost function –

the penalty term is usually a function of the number of parameters in the model;

(2) dropout, which is a technique that randomly sets several of the weights in

a neural network to zero, which helps to prevent overfitting by reducing the

variance of the network; and (3) data augmentation, which is a technique that

involves modifying the input data to the neural network by applying random

transformations. This technique also helps prevent overfitting by increasing the

size of the training set.

1.2.2 Part II: Architectures: CNNs, RNNs, GNNs, and Transformers

Part II, Architectures, is about deep learning architectures and consists of four

chapters. The first three chapters in this part present successful deep learning

representations since they share weights across space, time, or neighborhoods.

Chapter 5 presents convolutional neural networks (CNNs), which are a type

of neural network that is designed to recognize patterns in images. The network

comprises a series of layers, with each layer performing a specific function. The

first layer is typically a convolutional layer, which performs a convolution opera-

tion on the input image. The convolution operation is a mathematical operation

that extracts information from the input image. The output of the convolutional

layer is then passed to a pooling layer, which reduces the number of neurons

in the network. Multiple convolutions and pooling layers are followed by a se-

ries of fully connected layers responsible for classification or other applications

performed on the image. Convolutional neural networks perform well in practice

across a broad range of applications since they share weights at multiple scales

across space. Finally, the chapter describes CNN architectures such as residual

neural networks (ResNets), DenseNets, and ODENets.

Chapter 6 introduces recurrent neural networks (RNNs), which share weights

across time. This chapter describes backpropagation through time, its limita-

tions, and the solutions in the form of long short-term memory (LSTM) and

gated-recurrent unit (GRU). Next, the chapter describes sequence-to-sequence

models, followed by encoder–decoder attention and self-attention and embed-

dings.

Chapter 7 presents graph neural networks (GNNs), which share weights across

neighborhoods. The chapter begins with the definitions of graphs and their repre-

sentations. Graph neural networks are introduced and applied to irregular struc-

tures such as networks. They are used for three tasks: (1) predicting properties

of nodes; (2) predicting properties of edges; and (3) predicting properties of

sub-graphs or properties of entire graphs.

The second part of the book concludes with Chapter 8, which covers state-of-
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the-art Transformers, also known as foundation models, which have become a

mainstream architecture in deep learning. Transformers have disrupted various

fields, including natural language processing, computer vision, audio process-

ing, programming, and education. Large Transformer models currently consist

of more than one trillion parameters, and the number of parameters of Trans-

formers is increasing by orders of magnitude each year; it is on track to surpass

the number of connections in the human brain. Transformers may be classified

into three types of architectures: (1) autoencoding Transformers, which is a stack

of encoders; (2) auto-regressive Transformers, which is a stack of decoders; and

(3) sequence-to-sequence Transformers, which is a stack of encoders connected

to a stack of decoders. New scalable deep learning architectures such as Trans-

formers are revolutionizing how machines perceive the world, make decisions,

and generate novel output.

1.2.3 Part III: Generative Models: GANs, VAEs, and Normalizing Flows

The task of classification maps a set of examples to a label. In contrast, generative

models map a label to a set of examples. Part III, Generative Models, consists

of two chapters.

Chapter 9 introduces generative adversarial network (GAN) theory, practice,

and applications. The chapter begins by describing the roles of the generator and

discriminator. Next, the advantages and limitations of different loss functions

are described. Generative adversarial network training algorithms are presented,

discussing the issues of mode collapse and vanishing gradients while providing

state-of-the-art solutions. Finally, the chapter concludes with a broad range of

applications of GANs.

Chapter 10 introduces variational inference and its extension to black-box

variational inference used in practice for inference on large datasets. Both reverse

Kullback–Leibler (KL) and forward KL approaches are presented. The chapter

covers the variational autoencoder algorithm, which consists of an encoder neural

network for inference and a decoder network for generation, trained end-to-end

by backpropagation. The chapter describes how the variational approximation

of the posterior is improved using a series of invertible transformations, known

as normalizing flows, in both discrete and continuous domains. Finally, state-of-

the-art examples of deep variational inference on manifolds are presented.

1.2.4 Part IV: Reinforcement Learning

Part IV covers Reinforcement Learning, a type of machine learning in which an

agent learns by interacting with an environment.

Chapter 11 begins by defining a stateless multi-armed bandit, presenting the

trade-off between exploration and exploitation. Next, the chapter covers ba-

sic principles of state machines and Markov decision processes (MDPs) with
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known transition and reward functions. Finally, the chapter presents reinforce-

ment learning in which the transition and reward functions are unknown, and

therefore the agent interacts with the environment by sampling the world. Monte

Carlo sampling and temporal difference sampling are described with examples.

The chapter concludes by presenting the Q-learning algorithm.

Chapter 12 presents deep reinforcement learning through value-based methods,

policy-based methods, and actor–critic methods. Value-based methods covered

include deep Q-networks and present prioritized replay. Policy-based methods

described include policy gradients and REINFORCE. Next, the chapter covers

actor–critic methods, including advantage actor–critic and asynchronous advan-

tage actor–critic. Advanced hybrid approaches, such as natural policy gradient,

trust region policy optimization, proximal policy optimization, and a deep de-

terministic policy gradient, are presented. Next, the chapter covers model-based

reinforcement learning approaches, including Monte Carlo tree search (MCTS),

AlphaZero, and world models. The chapter concludes by presenting imitation

learning and exploration strategies for environments with sparse rewards.

1.2.5 Part V: Applications

The book concludes with Part V, which covers a dozen state-of-the-art applica-

tions of deep learning in a broad range of domains: autonomous vehicles, climate

change and monitoring, computer vision, audio processing, voice swapping, music

synthesis, natural language processing, automated machine learning, learning-

to-learn courses, protein structure prediction and docking, combinatorial opti-

mization, computational fluid dynamics, and plasma physics. Each deep learning

application is briefly described, along with a visualization or system architecture.

1.2.6 Appendices

The first appendix, Matrix Calculus, defines the partial derivatives of a function

with respect to variables and is helpful for gradient computations in backprop-

agation and optimization. The second appendix summarizes best practices in

scientific writing and reviewing. A section on scientific writing addresses the ab-

stract, introduction, related work, the structure of the text, figures, captions,

results, discussion, and the reader’s perspective and provides this book’s style

sheet. A section on reviewing explains the review process, including best prac-

tices for evaluating and rating scientific work and writing a rebuttal.

1.3 Code

Hundreds of Python functions are automatically generated on each topic for

each chapter by program synthesis using deep learning. All of the code is made

available on the book’s website at www.dlbook.org.

www.dlbook.org
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1.4 Exercises

Each chapter has around a dozen human-generated theoretical and programming

exercises and their solutions. In addition, hundreds of questions and solutions on

each topic are automatically generated by program synthesis using deep learn-

ing. All questions and solutions are made available on the book’s website at

www.dlbook.org.

www.dlbook.org


2 Forward and Backpropagation

2.1 Introduction

This chapter defines neural networks and presents forward propagation and back-

propagation. Neural networks are defined as a composition of functions consisting

of a linear and a non-linear part. The linear part is matrix multiplication, and the

non-linear part is a non-linear activation function. We define the network inputs

x, pre-activations z, non-linear activation functions f , activation units a, and

outputs y. These are used to introduce forward propagation in a neural network.

Next, we introduce loss functions and their gradients, derivatives of non-linear

activation functions, and the chain rule. These are used to present backpropaga-

tion in a neural network, which is the cornerstone of training neural networks by

gradient descent. Next, we present initialization and normalization strategies for

neural networks. Finally, the chapter introduces the key deep learning software

libraries and platforms.

2.2 Fully Connected Neural Network

A neural network as shown in Figure 2.1 is a composition of functions:

FL(. . . F 1(F 0(x))) (2.1)

F ℓ represents layers ℓ = 0, . . . , L, where each function F ℓ consists of a linear

part which is a matrix multiplication W (green) and non-linear part which is

pointwise application of a non-linear function f (blue). Figure 2.2 shows a fully

connected neural network. Each column of pre-activations is denoted by zℓ, which

is the result of multiplying the input to the layer by a matrix W ℓT . A non-linear

function f is applied pointwise to the coefficients of the pre-activations zℓ to

form activation units aℓ. Together, these operations form layer ℓ of the network.

Layer ℓ = 0 is the input layer with input example x and layer ℓ = L is the output

layer with output y. The number of activation units in layer ℓ for ℓ = 0, . . . , L is

denoted by nℓ where L = 3.

Layer ℓ contains pre-activations zℓ and activation units aℓ, inputs x = a0, and

outputs y = aL, as shown in Figure 2.2. The input x = a0 is a vector denoting

a single sample. For example, if x is a color w × h image, then a0 is flattened
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Figure 2.1 Three-layer fully connected neural network. Each layer of the network
consists of a linear part (in green) and a non-linear part f (in blue). The inputs are a

3× 1 vector x = (x1, x2, x3)
T which are multiplied by a 5× 3 matrix W 1T to produce

a 5× 1 vector of pre-activations z1 = (z11 , z
1
2 , z

1
3 , z

1
4 , z

1
5)

T = W 1Tx. A non-linear
activation function f is applied point-wise to each element z1i of the pre-activation
vector to yield a 5× 1 activation vector a1 = (a1

1, a
1
2, a

1
3, a

1
4, a

1
5)

T such that a1
i = f(z1i ).

Together, the linear part of matrix multiplication (in green) and non-linear part of
point-wise non-linear activation function (in blue) form the first layer of the neural
network. The output activations a1 of the first layer serve as the inputs to the second
layer of the network and the process is repeated. In the second layer the 5× 1

activations a1 are multiplied by the 4× 5 weight matrix W 2T to yield a 4× 1

pre-activations vector z2 = W 2T a1, which is passed through a pointwise non-linear
activation function f to yield a 4× 1 vector of activations a2 = f(z2). The outputs a2

of the second layer form the input to the third layer, which yields a 3× 1

pre-activation vector z3 = W 3T a2 followed by a 3× 1 activation vector a3 = f(z3),
which constitute the outputs y = a3 of the network.

and represented as a 3wh× 1 vector, where each color channel (red, green, and

blue) constitutes wh coefficients. The layers of a neural network form a Markov

chain, as shown in Figure 2.3, where each layer l depends only on the previous

layer l − 1. In this example the input, pre-activations, activations, and output

are represented by vectors.

The matrix X = A0 is an n0 × m matrix whose columns are examples a0i

for i = 1 . . .m. The matrix A0 =
[

a01 · · · a0m
]

has n0 rows, which are features,

and m columns, which are examples. The output ŷ = aL is a vector for a single

example and the matrix Ŷ = AL is a matrix of outputs for m examples. Here,

AL = [a31, . . . , a3m] for L = 3 and m examples. For layer ℓ, Aℓ is an nℓ × m

matrix.
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Figure 2.2 Fully connected neural network. Each layer of the network consists of
multiple nodes (orange). In this example, the input is a 3× 1 vector x which is
considered layer 0 with n0 = 3 nodes. The first hidden layer consists of n1 = 5 nodes.
The second layer has n2 = 4 nodes, and the third layer with n3 = 3 nodes in this
example is the output y.

Figure 2.3 Neural network layers form a Markov chain with operations on vectors.
Starting from the input vector x = a0, which is considered layer ℓ = 0, each layer

ℓ = 1, . . . , L consists of a pre-activation vector zℓ = W ℓT aℓ−1 and activation vector
aℓ = f(zℓ) and only depends on the previous layer output vector aℓ−1. The output is
y = aL, where L = 3 in this example denotes the number of layers.

2.3 Forward Propagation

Forward propagation of activations from layer ℓ − 1 to layer ℓ is a mapping F ℓ

from Aℓ−1 to Aℓ:

Aℓ = F ℓ(Aℓ−1) (2.2)

where each F ℓ is composed of two parts: a linear function and a non-linear

function. The linear function is defined as:

Zℓ = W ℓTAℓ−1 + bℓ (2.3)

where W ℓ is an nℓ−1 × nℓ matrix of weights for layer ℓ, W ℓT is the nℓ × nℓ−1

transpose of W ℓ and bℓ is an nℓ × 1 bias vector for layer ℓ. Both act on all

examples.

We absorb the bias vector bℓ into W ℓT by appending it as the last column,

making W ℓT an nℓ × (nℓ−1 + 1) matrix, and appending a 1 to the activation

vector aℓ−1 or equivalently appending a row of 1s to the activation matrix,
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making Aℓ−1 an (nℓ−1 + 1)×m matrix. Without loss of generality we continue

to use the notation ofW ℓT and Aℓ−1 to denote the augmented matrix and vector.

For example, if W ℓ =

⎛

⎝

w11 w12

w21 w22

w31 w32

⎞

⎠ and Al−1 =

⎛

⎝

a1
a2
a3

⎞

⎠ and bl =

(

b1
b2

)

, then

W ℓTAℓ−1 + bℓ =

(

w11 w21 w31

w12 w22 w32

)

⎛

⎝

a1
a2
a3

⎞

⎠+

(

b1
b2

)

=

(

w11a1 + w21a2 + w31a3 + b1
w12a1 + w22a2 + w32a3 + b2

)

=

(

w11 w21 w31 b1
w12 w22 w32 b2

)

⎛

⎜

⎜

⎝

a1
a2
a3
1

⎞

⎟

⎟

⎠

Equation 2.3 is then rewritten as matrix multiplication:

Zℓ = W ℓTAℓ−1 (2.4)

The non-linear part is a non-linear activation function f ℓ, for layer ℓ, which

operates on each element of the matrix Zℓ separately:

Aℓ = f ℓ(Zℓ) (2.5)

2.3.1 Algorithm

Unrolling the forward propagation for the network shown in Figure 2.3, we get:

Ŷ = A3 = f3(W 3T f2(W 2T f1(W 1TX))) (2.6)

If f is the identity then F is linear in x.

Algorithm 2.1 provides the forward propagation pseudocode.

Algorithm 2.1 Forward propagation.

given initial weights W 1, . . . ,WL

given data example vector x1

for each layer ℓ = 1, . . . , L do:

xℓ+1 = f ℓ(W ℓTxℓ)

2.3.2 Example

As an example of forward propagation, consider the neural network shown in

Figure 2.4 with input vector x = [x1, x2, x3]
T .

The 3 × 1 input is x = a0 and the 3 × 2 weight matrix of the first layer is
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Figure 2.4 Neural network example. The input to the network is a 3× 1 vector
x = (x1, x2, x3)

T .

Figure 2.5 Example of forward propagation in a neural network. The 3× 1 input

vector x is multiplied by a 2× 3 matrix W 1T to form a 2× 1 pre-activations vector

z1 = W 1Tx, which is the linear part (in green) of the first layer of the network.

W 1 =

⎛

⎝

w1
11 w1

12

w1
21 w1

22

w1
31 w1

32

⎞

⎠. The 3× 1 input is multiplied by the 2× 3 transpose W 1T

to yield the 2× 1 pre-activations z1, as shown in Figure 2.5:

z1 =

(

z11
z12

)

= W 1Tx =

(

w1
11 w1

21 w1
31

w1
12 w1

22 w1
32

)

⎛

⎝

x1

x2

x3

⎞

⎠ =

(

w1
11x1 + w1

21x2 + w1
31x3

w1
12x1 + w1

22x2 + w1
32x3

)

(2.7)

The pre-activation vector z1 is followed by a non-linear function f1 applied

pointwise to yield the activation vector a1 = [a11, a
1
2]

T of the first layer, as shown

in Figure 2.6:

a1 =

(

f(z11)

f(z12)

)

=

(

a11
a12

)

(2.8)

Next, as shown in Figure 2.7, the activation vector a1 of the first layer is

multiplied by the 2× 2 weight matrix W 2T of the second layer:

z2 = W 2Ta1 =

(

w2
11 w2

21

w2
12 w2

22

)(

a11
a12

)

=

(

w2
11a

1
1 + w2

21a
1
2

w2
12a

1
1 + w2

22a
1
2

)

=

(

z21
z22

)

(2.9)

followed by a non-linear function f of the second layer applied pointwise to yield
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Figure 2.6 Example of forward propagation in a neural network highlighting the first
layer of the network. After the linear part (in green), the 2× 1 pre-activation vector
z1 is passed through a point-wise non-linear activation function f to form a 2× 1
activation vector a1 (in blue). Together, the linear part (in green) and a non-linear
part (in blue) constitute the first layer of the network.

Figure 2.7 Example of forward propagation in a neural network highlighting the
second layer of the network. The outputs of the first layer a1 are multiplied by the

weight matrix W 2T to form the 2× 1 pre-activation vector z2 = W 2T a1 (in green),
which is passed through a pointwise non-linear activation function f to form a 2× 1
activation vector a2 = f(z2) (in blue). Together, the linear part (in green) and a
non-linear part (in blue) constitute the second layer of the network.

the activation vector a2 of the second layer:

a2 =

(

f(z21)

f(z22)

)

=

(

a21
a22

)

(2.10)

Finally, the activation vector a2 of the second layer is multiplied by the weight

matrix W 3T of the third layer to yield the output y, as shown in Figure 2.8:

y =
(

w3
1 w3

2

)

(

a21
a22

)

= w3
1a

2
1 + w3

2a
2
2 (2.11)

In this example, the network output is a real value used for regression rather

than classification, and therefore the last layer does not consist of a non-linear

activation function. Next, various non-linear activation functions are described.

2.3.3 Logistic Regression

As a second example of forward propagation in a general computation graph,

we consider simple logistic regression, which is defined when the log-odds of the



2.3 Forward Propagation 15

Figure 2.8 Example of forward propagation in a neural network highlighting the third
layer of the network. In this example, the network output is a real value used for
regression rather than classification and therefore the last layer consists only of

multiplication of the 2× 1 activations a2 by a 1× 2 weight matrix W 3T to yield a

scalar output y = W 3T a2 (in green) and does not include a non-linear activation
function.

Figure 2.9 Logistic regression computation graph forward propagation.

class is a linear function:

f(x) = log

(

p(x)

1− p(x)

)

= wTx (2.12)

which yields the sigmoid:

p(x) =
1

1 + e−f(x)
(2.13)

which may represent mapping the input to a probability in (0, 1). Therefore,

fitting a logistic regression model to data involves computing the likelihood that

each example belongs to a class given the weights:

g(x,w) =

{

p(x), if x ∈ C

1− p(x), if x �∈ C
(2.14)

Next, we sum
∑

i g(x
i, w) for all examples i = 1, . . . ,m, so that the model over all

possible weights w which gives the largest sum is the maximum likelihood model.

Stacking logistic regression functions results in a highly non-linear parametric

function, which is a neural network.

In our example, the inputs to the graph are the variables x, w, and the bias

b if not absorbed into the weights, and the output is L(y, f(x,w, b)) where a =

f(x,w, b) = g(wTx+ b) and L(y, a) = −y log a− (1− y) log(1− a), as shown in

Figure 2.9.
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2.4 Non-linear Activation Functions

The pre-activation z of a neural network may be followed by a differentiable

non-linear activation function f : R �→ R. Typical non-linear activation functions

include the sigmoid, hyperbolic tangent, rectified linear unit (ReLU), Swish, and

softmax.

2.4.1 Sigmoid

For a probability p(x) the log-odds is defined by:

log
p(x)

1− p(x)
(2.15)

For example, for a probability 1
2 the odds are 50:50 or 1, and the log-odds is 0.

For a probability of 0.9, the odds are 90:10 or 9, and the log-odds equal 2.19. A

linear classifier is given by:

fw(x) = wTx (2.16)

Setting the log-odds to be a linear classifier:

log
p(x)

1− p(x)
= wTx (2.17)

and solving for p(x) results in the sigmoid function. The sigmoid function shown

in Figure 2.10 maps the input z to (0, 1) by:

f(z) =
1

1 + e−z
(2.18)

The function asymptotes at lim
z→∞

f(z) = 1 and lim
z→−∞

f(z) = 0, and crosses zero

at f(0) = 0.5. The sigmoid function is commonly used in logistic regression for

building a classifier by taking the sigmoid of linear regression.

2.4.2 Hyperbolic Tangent

The hyperbolic tangent function tanh shown in Figure 2.11 maps the input z to

(−1, 1) by:

f(z) =
ez − e−z

ez + e−z
(2.19)

The function asymptotes at lim
z→∞

f(z) = 1 and lim
z→−∞

f(z) = −1, and crosses

zero at f(0) = 0.



2.4 Non-linear Activation Functions 17

Figure 2.10 Sigmoid function: f(z) = 1

1+e−z crosses zero at f(0) = 0.5 and asymptotes
at lim

z→∞

f(z) = 1 and lim
z→−∞

f(z) = 0.

Figure 2.11 Hyperbolic tangent function: f(z) = ez−e−z

ez+e−z crosses zero at f(0) = 0 and
asymptotes at lim

z→∞

f(z) = 1 and lim
z→−∞

f(z) = −1.

2.4.3 Rectified Linear Unit

The ReLU, shown in Figure 2.12, maps negative values to zero:

g(z) = z+ = max(0, z) (2.20)

If g is a ReLU non-linear activation function ReLU(x) = max{0, x}, then f is

continuous and piecewise linear in x and the graph of f consists of hyper-planes

with folds.

The leaky ReLU shown in Figure 2.13 is defined for α ≥ 0 by:

g(z) = z+ − αz− = max(0, z)− αmax(0,−z) (2.21)
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Figure 2.12 Rectified linear unit (ReLU) function.

Figure 2.13 Leaky ReLU function.

2.4.4 Swish

The Swish function, shown in Figure 2.14, is a non-linear activation function

found by automatically searching the space of activation functions (Ramachan-

dran et al., 2017) for a function with good performance which empirically outper-

forms the ReLU. It is defined by f(x) = xσ(βx) where σ is the sigmoid function.

As limβ→∞ f(x) the Swish becomes the ReLU; however, unlike the ReLU, which

has a stepwise derivative, the Swish has a smooth derivative for various values

of β.

2.4.5 Softmax

For binary classification the labels are yi ∈ {0, 1} for example i. For multiple

classes, the labels are yi ∈ {1, 2, . . . , k} for example i. The softmax function
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Figure 2.14 Swish function with β = 1.

extends logistic regression from binary to multi-class classification:

fw(x) =

⎛

⎜

⎝

p(y = 1|x;w)
...

p(y = k|x;w)

⎞

⎟

⎠
=

1
∑k

c=1 e
wT

c x

⎛

⎜

⎜

⎝

ew
T
1 x

...

ew
T
k x

⎞

⎟

⎟

⎠

(2.22)

The softmax is a non-linear activation function used in the last layer L for

multi-class classification. The softmax function is a generalization of the sigmoid

function, from scalars to vectors, mapping a vector z ∈ Rk to a vector f(z) ∈
[0, 1]k which sums to 1:

∑k
c=1 f(z)c = 1, where k is the number of classes. The

softmax function for class i is given by:

fL(zL)i =
ez

L
i

∑k
c=1 e

zL
c

(2.23)

The softmax is used for multi-class classification and computes a probability in

(0, 1) for each class c = 1, . . . , k, which sum to 1.

2.5 Loss Functions

Compare output f(x) = ŷ = aL with ground truth label y for an input x.

For example, consider the probability of an image being an object. Compare all

outputs f(X) = Ŷ = AL with all ground truth labels Y for all inputsX. The loss

function for a single input example and output label is L(y, F (x)). The average

loss over all examples, or cost, is:

1

m

m
∑

i=1

L(yi, ŷi) (2.24)

Our goal is to minimize the loss function so that the predictions agree with
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Figure 2.15 Loss functions |y − a|p for various values of p with y = 0.

the ground truth. The loss function space may be highly non-linear as a func-

tion space of the network weights. The weights constitute a point in a high-

dimensional space, and moving in that space corresponds to changing the clas-

sifier and hence the predicted labels.

Given the weights of the network W and forward propagating the inputs x

through the network to get the output labels ŷi = F (xi,W ) our goal is to find

weights W such that:

minimize
W

1

m

m
∑

i=1

L(yi, F (xi,W )) (2.25)

A common regularization term R(W ) may be added to the loss function to prefer

simple models and avoid overfitting.

In general, the loss function is not convex with respect toW ; therefore, solving

Equation 2.25 does not guarantee a global minimum. We therefore use gradient

descent to find a local minimum.

Common loss functions are the mean squared error, with L(yi, ŷi) defined by:

L(yi, ŷi) = (yi − ŷi)2 (2.26)

The loss function |y−a|p for various values of p with y = 0 is shown in Figure

2.15.
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The logistic regression loss is defined by:

L(yi, ŷi) = −yi log(ŷi)− (1− yi) log(1− ŷi) (2.27)

which is the special case for binary classification k = 2:

L(yi, ŷi) = −
k
∑

c=1

I{yi = k} log p(y = k|xi,W ) (2.28)

for k classes, where I is the indicator function such that I{true} = 1 and

I{false} = 0, and p(y = k|xi,W ) is a softmax coefficient. For the special case

of logistic regression, the mean squared error is not convex, whereas the logistic

regression loss is convex.

2.6 Backpropagation

The goal of backpropagation is to efficiently compute the derivatives of the total

loss function with respect to all of the network weights. Backpropagation, also

known as automatic reverse differentiation, efficiently computes the gradient of

a function F with respect to all of the parameters ∂F
∂W ℓ for all ℓ.

Once the output xℓ of the last layer is computed by forward propagation, the

loss between the ground truth labels y and network output is minimized:

minimize
W

LW(xℓ, y) (2.29)

Denote the application of a single layer of the network by:

xℓ+1 = f(W ℓTxℓ) (2.30)

Then, differentiating both sides, we get:

dxℓ+1 = f ′ℓ(dW ℓxℓ +W ℓdxℓ) (2.31)

and in vector and matrix form:

dx = DdW + Ldx (2.32)

where dx is a vector of derivatives, D is a diagonal matrix, L is a lower triangular

matrix, and dW is the derivative with respect to the network weights. Solving

for dx, we get:

(I − L)dx = DdW (2.33)

and, therefore:

dx = (I − L)−1DdW (2.34)
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Figure 2.16 Computation graph forward propagation.

2.7 Differentiable Programming

Backpropagation is a special case of differentiable programming (Wengert, 1964;

Bellman et al., 1965) for neural networks. Derivatives of variables corresponding

to nodes in a computational directed acyclic graph (DAG) can be computed with

respect to the output using the chain rule in two opposite directions. Differentia-

tion in a forward pass through the graph using the chain rule results in the partial

derivative of the output with respect to a single input variable, whereas differen-

tiation in a backward pass using the chain rule results in the partial derivative

of the output with respect to all input variables, namely the gradient, in a single

pass. This O(n) factor in computational efficiency is significant in data science,

in a similar fashion to the log(n) factor of the fast Fourier transform to convolu-

tion in signal processing and has broad implications. First is the special case of

backpropagation in neural networks (Rumelhart et al., 1986), namely computing

the gradient of the loss function with respect to the weights in a single backward

pass. Perhaps most importantly, any number of complex differentiable functions

can be composed into a computational DAG, and optimized using differentiable

programming.

2.8 Computation Graph

2.8.1 Example

We begin with a simple toy example illustrating forward and backpropagation

using a computation graph. The inputs to the graph shown in Figure 2.16 are

three constants a = 3, b = 2, and c = 1. Nodes in the graph denote arithmetic

operations. The graph computes the output f(a, b, c) = y = 5u = 5(v + c) =

5(ab+ c) = 35 by propagating the input forward through the nodes.

Next, we compute the derivatives of the output with respect to each input by
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Figure 2.17 Computation graph backward propagation, third layer.

Figure 2.18 Computation graph backward propagation, second layer.

applying the chain rule of differentiations. As shown in Figure 2.17, beginning

with y = 5u the derivative with respect to the intermediate value u is dy
du

= 5.

The derivative of y with respect to intermediate value v is dy
dv

= dy
du

du
dv

= 5×1 =

5 and the derivative of y with respect to the input c is dy
dc

= dy
du

du
dc

= 5× 1 = 5,

as shown in Figure 2.18.

Finally, the derivative of y with respect to the inputs a and b are respectively
dy
da

= dy
dv

dv
da

= 5× 2 = 10 and dy
db

= dy
dv

dv
db

= 5× 3 = 15, as shown in Figure 2.19.

Notice that the computation at each node is local. Each node receives an input

from the next layer, performs a local computation of its partial derivative, and

provides output to the previous layer. This allows us to build complex graphs

consisting of many simple local computations. The deep learning frameworks

TensorFlow and PyTorch perform such simple local computations on complex

graphs.
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Figure 2.19 Computation graph backward propagation, first layer.

Figure 2.20 Logistic regression computation graph backpropagation, third layer.

2.8.2 Logistic Regression

As a second example, we consider backpropagation in logistic regression. We first

compute the derivative of the loss with respect to the predicted output dL
da

, as

shown in Figure 2.20.

Next we compute the derivative of the loss with respect to z such that dL
dz

=
dL
da

da
dz
, as shown in Figure 2.21.

Finally, we compute the derivative of the loss with respect to the weights w

Figure 2.21 Logistic regression computation graph backpropagation, second layer.
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Figure 2.22 Logistic regression computation graph backpropagation.

Figure 2.23 Backpropagation.

such that dL
dw

= dL
dz

dz
dw

and dL
db

= dL
dz

dz
db
, as shown in Figure 2.22, all by applying

the chain rule. Plugging in the derivative dL
da

= − y
a
+ 1−y

1−a
, and setting a = g(z) =

1
1+e−z to be the sigmoid function, we plug in the local value da

dz
= ez

(1+ez)z =

g(z)(1−g(z)) and reach the derivatives of the output with respect to each of the

input variables.

2.8.3 Forward and Backpropagation

In a neural network, forward propagation maps the activations from layer ℓ− 1

forward to layer ℓ by matrix multiplications followed by an elementwise non-

linear activation function. The forward mapping from Aℓ−1 → Aℓ is given by:

Zℓ = W ℓTAℓ−1 (2.35a)

Aℓ = f ℓ(Zℓ) (2.35b)

which means that each activation layer Aℓ is a function F (Aℓ−1,W ℓT ) of the

previous activation layer Aℓ−1 and a weight matrix W ℓ, as shown in Figure 2.3.

Backpropagation maps the derivatives from layer ℓ back to layer ℓ − 1 with

respect to both activations and weights, as shown in Figure 2.23.

Given ∂L
∂Aℓ , our goal is to compute the partial derivative of the loss with respect

to the previous layer’s activations ∂L
∂Aℓ−1 and with respect to the weights ∂L .
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Figure 2.24 Sigmoid derivative.

Using ∂L
∂Aℓ and ∂L

∂Zℓ , the backward mapping from ∂L
∂Aℓ → ∂L

∂Aℓ−1 is given by:

∂L
∂Zℓ

=
∂L
∂Aℓ

× f ′ℓ(Zℓ) (2.36a)

∂L
∂Aℓ−1

= (W ℓ)T
∂L
∂Zℓ

(2.36b)

which follows from the chain rule for differentiation:

∂L
∂Zℓ

=
∂L
∂Aℓ

∂Aℓ

∂Zℓ
(2.37)

and

∂L
∂Aℓ−1

=
∂L
∂Zℓ

∂Zℓ

∂Aℓ−1
(2.38)

Next, we differentiate the loss with respect to the weights. SinceAℓ = F (Aℓ−1) =

f ℓ(Zℓ) = f ℓ(W ℓTAℓ−1), therefore by the chain rule we have:

∂L
∂W ℓ

=
∂L
∂Aℓ

∂F (Aℓ−1)

∂W ℓ
=

∂L
∂Aℓ

∂f ℓ(W ℓTAℓ−1)

∂W ℓ
=

∂L
∂Aℓ

f ′ℓ(Aℓ−1)T (2.39)

Finally, the weights W ℓ are updated using ∂L
∂W ℓ by:

W ℓ = W ℓ − α
∂L
∂W l

(2.40)

2.9 Derivative of Non-linear Activation Functions

The derivative of the sigmoid function is:

f ′(z) =
ez

(1 + ez)2
= f(z)(1− f(z)) (2.41)

as shown in Figure 2.24. The sigmoid derivative is computed efficiently by using

the sigmoid itself.
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Figure 2.25 Hyperbolic tangent derivative.

Figure 2.26 Rectified linear unit (ReLU) derivative.

The derivative of the hyperbolic tangent function is:

f ′(z) =
4

(e−z + ez)2
= 1− f(z)2 (2.42)

as shown in Figure 2.25. The hyperbolic tangent derivative is computed efficiently

using the hyperbolic tangent function.

The derivative of the ReLU is defined for z �= 0:

f ′(z) =

{

0, if z < 0

1, if z > 0
(2.43)

as shown in Figure 2.26. The derivative of the ReLU is not defined at zero, though

for practical purposes, machine floating-point numbers may not be exactly zero.

If they are, we add a tiny offset to define the derivative. The derivative of the

ReLU is either 0 or 1, which is significantly simpler than the derivatives of the

sigmoid and tanh activation functions.
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Figure 2.27 Swish derivative for β = 1.

Similarly, the derivative of the leaky ReLU is defined for α ≥ 0 and z �= 0 by:

f ′(z) =

{

α, if z < 0

1, if z > 0
(2.44)

While similar to the ReLU, the Swish function (Ramachandran et al., 2017)

has the advantage that its derivative is well defined and smooth:

f ′(z) = σ(βz) + βzσ(1− σ(βz)) (2.45)

as shown in Figure 2.27.

2.10 Backpropagation Algorithm

Given an input example and a ground-truth label, we perform the following three

steps iteratively:

1. Forward propagation: Forward propagate the activations through all layers

from input to output, reaching a prediction.

2. Compute loss function: Compute the error between the prediction and

ground truth.

3. Backpropagation: Use the chain rule for differentiation for backpropagating

the gradients through the layers in the opposite direction from the output

to the input.

4. Update the weights.

Algorithm 2.2 provides pseudocode for training a neural network using stochas-

tic gradient descent (SGD) using forward and backpropagation.
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Algorithm 2.2 Training a neural network by SGD using forward and backprop-

agation.

for i = 1, . . . , n do

randomly sample an input–label pair (x = a0, y)

for each layer ℓ = 1, . . . , L do:

zℓ = W ℓaℓ−1

aℓ = f ℓ(zℓ)

for each layer ℓ = L, . . . , 1 do:
∂L(y,F (x,W ))

∂zℓ = ∂L(y,F (x,W ))
∂aℓ × f ′ℓ(zℓ)

∂L(y,F (x,W ))
∂W ℓ = ∂L(y,F (x,W ))

∂zℓ aℓ−1

W ℓ = W ℓ − α ∂L
∂W ℓ

Figure 2.28 Backpropagation example: third layer.

2.10.1 Example

As an example of backpropagation, consider the neural network shown in Figure

2.4 with sigmoid non-linear activation functions in the first and second layers,

f1 = f2 = σ. First, as shown in Figure 2.28, the derivative of the output y =

w3
1a

2
1 + w3

2a
2
2 is computed with respect to z21 :

∂y

∂z21
= w3

1

∂a21
∂z21

= w3
1σ(z

2
1)(1− σ(z21)) = w3

1a
2
1(1− a21) (2.46)

and z22 , such that the derivative of the output y with respect to z2 is:

∂y

∂z2
=

∂y

∂a2
∂a2

∂z2
=

(

w3
1a

2
1(1− a21)

w3
2a

2
2(1− a22)

)

(2.47)

Next, as shown in Figure 2.29, the derivative of the output y with respect to

z1 is computed by using the value ∂y
∂z2 of the derivative of the output y with

respect to z2, which was previously computed, and the chain rule:

∂y

∂z1
=

∂y

∂z2
∂z2

∂z1
=

∂y

∂z2
∂z2

∂a1
∂a1

∂z1
=

(

w2
11 w2

12

w2
21 w2

22

)

∂y

∂z2
a1(1− a1) (2.48)

Finally, as shown in Figure 2.30, the derivative of the output y is computed

with respect to each of the weight matrix coefficients of the first layer by using
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Figure 2.29 Backpropagation example: second layer.

Figure 2.30 Backpropagation example: first layer.

the value ∂y
∂z1 of the derivative of the output y with respect to z1, which was

previously computed:

∂y

∂w1
11

=
∂y

∂z1
∂z1

∂w1
11

=
∂y

∂z1

(

x1

0

)

(2.49)

In a single backward pass, the derivatives of the output y with respect to each

of the network weights are computed efficiently by a series of local computations

using the chain rule for differentiation.

2.11 Chain Rule for Differentiation

We define the chain rule for differentiation for two and three functions in one

dimension and two functions in higher dimensions.

2.11.1 Two Functions in One Dimension

First, consider the simple case of the derivative of the composition of two func-

tions in one dimension:

(f ◦ g)′ = (f ′ ◦ g)g′ (2.50)

which is:

f(g(x))′ = f ′(g(x))g′(x) (2.51)
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Therefore, for y = g(x) and z = f(y) = f(g(x)) we get:

dz

dx
=

dz

dy

dy

dx
= f ′(y)g′(x) = f ′(g(x))g′(x) (2.52)

2.11.2 Three Functions in One Dimension

Next, consider the case of the derivative of the composition of three functions in

one dimension:

(f ◦ g ◦ h)′ (2.53)

which is:

f(g(h(x)))′ = f ′(g(h(x)))g(h(x))′ = f ′(g(h(x)))g′(h(x))h′(x) (2.54)

Let y = f(u) and u = g(v) and v = h(x); then we get:

dy

dx
=

dy

du

du

dv

dv

dx
(2.55)

2.11.3 Two Functions in Higher Dimensions

Let f : R
m → R

k and g : R
n → R

m. Let z = f(y) and y = g(x). Then

z = f(g(x)) maps the n × 1 vector x to the k × 1 vector z through the m × 1

vector y.

For f : Rn → R
m and y = f(x) mapping an n× 1 vector x to an m× 1 vector

y, for example by multiplying by A, is an m×n matrix such that y = Ax. Define

the Jacobian matrix as:

Jf =
[

∂f
∂x1

· · · ∂f
∂xn

]

=

⎡

⎢

⎣

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

⎤

⎥

⎦
(2.56)

and Jij =
∂fi
∂xj

.

For example, for the function:

y =

[

y1
y2

]

=

[

f1(x1, x2)

f2(x1, x2)

]

=

[

x2
1x2

5x1 + sin(x2) = f(x1, x2)

]

(2.57)

The Jacobian is:

Jf =

[

2x1x2 x2
1

5 cos(x2) = f(x1, x2)

]

(2.58)

and in the general case, in a similar fashion to the chain rule in one dimension

in Equation 2.50, the chain rule in higher dimensions is:

Jf◦g(x) = Jf (g(x))J (x) (2.59)
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For z = f(y) = (f1(y), . . . , fk(y)) and y = g(x) = (g1(x), . . . , gm(x)) applying

the chain rule we get:

∂(z1, . . . , zk)

∂(x1, . . . , xn)
=

∂(z1, . . . , zk)

∂(y1, . . . , ym)

∂(y1, . . . , ym)

∂(x1, . . . , xn)
(2.60)

which is Equation 2.52 in higher dimensions.

Storing and computing the Jacobian of large matrices in neural networks is

very inefficient. Therefore, we use the expressions derived in Equations 2.36 and

2.39.

2.12 Gradient of Loss Function

For a neural network, given a single training example, consider the loss function

L(y, F (x,W )). Writing ∂L = ∂L(y, F (x,W )) then by the chain rule of differen-

tiation for the output L we get:

δL =
∂L(y, F (x,W ))

∂zL
=

∂L(y, F (x,W ))

∂aL
× f ′L(zL) (2.61)

and for a squared error loss:

L(y, F (x,W )) =
1

2
‖y − F (x,W )‖22 (2.62)

where the derivative in Equation 2.61 is δL = −(y − aL)× f ′L(zL).

2.13 Gradient Descent

A practical method for minimizing the loss function is gradient descent. Gradient

descent iteratively finds a local minimum by taking steps in the direction of the

steepest descent, as shown in Algorithm 2.3. It does not guarantee to find a global

minimum, and two different starting points may result in two different local

minima. Local minimum points are rare in high dimensions since they require

that the partial derivatives in all dimensions be zero. Therefore, having saddle

points or plateaus in high dimensions is more common than a local minimum.

Algorithm 2.3 Gradient descent.

given a starting point x ∈ domf

repeat:

determine descent direction −∇f(x)

choose scalar α

update x := x− α∇f(x)

until stopping criterion is satisfied
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Given m training examples, the gradient of the loss function with respect to

the weights is given by:

∂L
∂W ℓ

=
1

m

m
∑

i=1

∂L(yi, F (xi,W ))

∂W ℓ
(2.63)

The gradient descent update is then given by W ℓ := W ℓ − α ∂L
∂W ℓ for layers

ℓ = 1, . . . , L− 1.

2.14 Initialization and Normalization

Given input x, a standard practice is to normalize the data to the standard

score by x = x−μ
σ

where μ = 1
n

∑n
i=1 xi is the mean and σ2 = 1

n

∑n
i=1(xi−μ)2 is

the variance. Input normalization improves the convergence of gradient descent,

turning narrow ravines in the loss function into even level sets. In a similar

fashion, batch normalization (Ioffe and Szegedy, 2015) normalizes each batch of

input for each layer of the network, making the optimization landscape smoother

(Santurkar et al., 2018).

Gradient descent methods require an initial value for the weights; however,

since the layers are symmetric with respect to the weights into each activation

we cannot initialize to zero. Therefore, a common practice is to initialize the

weights to small random values by using a normal distribution N(0,1)√
(n)

, where n is

the number of connections into an activation unit. Another common initialization

is a normal distribution with zero mean and variance σ2 = 2/(nl−1 + nl), where

nl−1 and nl are the number of activation units in the previous and current layers

of the weights (Glorot and Bengio, 2010).

2.15 Software Libraries and Platforms

The most notable and commonly used deep learning platforms are the open-

source libraries PyTorch (Paszke et al., 2017) from Facebook and TensorFlow

(Abadi et al., 2016) from Google. Both libraries implement automatic differenti-

ation on general computation graphs. Keras (Chollet, 2015) is a high-level API

based on TensorFlow that allows rapid prototyping.

2.16 Summary

This chapter presents forward and backpropagation in neural networks using lin-

ear algebra, calculus, and algorithms. Multiple examples illustrate the algorithms

and provide the backpropagation derivations using the chain rule in reverse mode

differentiation. Key advantages of backpropagation are:
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• Efficiency: It allows computing derivatives of the total loss function with re-

spect to all network weights in linear time in a single backward pass.

• Extendable: Backpropagation in neural networks is a special case of differen-

tiable programming and extends to a general computation graph with nodes

representing differentiable functions.

• Gradient-based learning: Backpropagation minimizes a total loss function by

updating the neural network parameters based on the gradients of the total loss

with respect to each of the parameters. Stochastic gradient descent, described

in the next chapter, is key in neural network optimization.
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3.1 Introduction

Why have a basic understanding of the optimization under the hood of deep

learning? A key reason is that different algorithms perform differently, and un-

derstanding their performance is important in practice.

An optimization goal when training neural networks is to minimize the loss

function. The loss function measures the error between the output of the net-

work, such as predictions, and target values, such as ground-truth values. The

optimization problem is that of finding the minimum of a function:

minimize
x∈X

f(x) (3.1)

for x in a feasible set X . The point x⋆ = argmin
x

f(x) is a local minimum of the

function if there exists δ > 0 such that f(x⋆) ≤ f(x) for all x where ‖x⋆−x‖ ≤ δ.

In the case of neural networks, f may be the loss function and x the parameters

of the network, and the optimization goal is to find the parameter values x∗ that

minimize the loss f(x).

The optimization problem for neural networks is usually solved using gradient

descent, an iterative method for finding a local minimum of a function. It starts

with an initial point and, at each iteration, updates the parameter values in the

direction of the negative gradient. Gradient descent converges to a local minimum

of the loss function if the learning rate is small enough. The gradient descent

algorithm may be implemented using backpropagation, which is an efficient way

to compute the gradient of a loss function with respect to the parameters of a

neural network.

3.2 Overview

3.2.1 Optimization Problem Classes

Optimization methods may be coarsely divided into two important classes: con-

vex and non-convex optimization problems, as shown in Figure 3.1. Convex opti-

mization problems are a tiny subset of non-convex problems (and may, in turn, be

finely classified into linear programs, quadratic programs, second-order cone pro-
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Figure 3.1 Optimization problem classes.

grams, semidefinite programs, and conic programs, each subsuming the other).

A set S is convex if for any points x, y ∈ S the line that connects them is in the

set αx+(1−α)y ∈ S for all α ∈ (0, 1). A function f is convex if the set of points

above the function graph is convex: f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y). The

maximum of convex functions is convex, and a convex function is the maximum

of its tangent functions. A convex optimization problem is defined for a convex

function over a convex set. Perhaps most importantly, the set of points that are a

minimum of a convex problem is convex, which means that any local minimum is

a global minimum. Unfortunately, training neural networks involves optimizing

non-convex optimization problems, so a local minimum will, in general, not be

a global minimum.

The most common non-convex optimization methods are gradient descent and

quasi-Newton methods. Gradient descent is a method for minimizing a function

f by taking steps proportional to the negative of the gradient of f . The gradient

descent algorithm proceeds by iteratively updating the variables in proportion

to their partial derivatives with respect to the objective function. This algorithm

converges to a local minimum, but it may converge slowly or not if the function

is not convex.

Quasi-Newton methods are a family of algorithms that use Newton’s method

to approximate the gradient descent algorithm. Newton’s method is an iterative

procedure for finding the roots of a function by computing successive approxi-

mations. The quasi-Newton methods use a Taylor expansion to approximate the

derivative of f at a given point. The algorithm then uses this approximation to

compute the next step in the gradient descent algorithm. This approach con-

verges much faster than gradient descent, but it does not guarantee that the

algorithm will converge to a global minimum.
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3.2.2 Optimization Solution Methods

In this chapter, we will review three types of optimization solution methods for

non-convex optimization problems, based on the degree of derivatives they use:

• First-order methods depend on first derivatives, including gradient descent,

which is the most simple and commonly used. Gradient descent is a first-order

method and the simplest optimization method. It is based on the gradient

of the cost function, which is calculated by taking partial derivatives of the

cost function with respect to all of the weights and biases in the network. The

gradient descent algorithm starts with an initial guess for all of the weights and

biases in the network. Then it iteratively updates these values by moving in a

direction that reduces error. We compute a gradient vector in each iteration,

which points in a direction that reduces error. We then move a small step

in that direction and repeat until we have moved far enough to reduce error

significantly.

• Second-order methods depend on first derivatives and their rate of change.

These include Newton’s method (which is impractical for directly optimizing

neural networks) and quasi-Newton methods (practical for optimizing neural

networks). These methods have faster convergence than first-order methods

but, even so, are less frequently used. Quasi-Newton methods are based on

approximating the Hessian matrix of the function to be optimized. The Hessian

matrix is a square matrix of second derivatives, and it is costly to compute

directly. Quasi-Newton methods approximate the Hessian using a diagonal

approximation or an approximation that only depends on first derivatives. The

most common quasi-Newton method used for neural network optimization is

Broyden–Fletcher–Goldfarb–Shanno (BFGS).

• Evolution strategies: Instead of optimizing an individual point toward a lo-

cal minimum, evolution strategies consider multiple points sampled from a

probability distribution, which progress as a group toward the minimum. The

algorithm is a variant of the genetic algorithm, with the main difference being

that instead of using a population of individuals, it uses a population of points.

The points are generated from a probability distribution over the search space.

The probability distribution is updated during the optimization process, and

each point is evaluated for its fitness. The points are then sorted by fitness

and used to form a new population for the next iteration.

3.2.3 Derivatives and Gradients

The derivative f ′(x) of a univariate function f at x is the rate of change of the

function at x:

f ′(x) =
df(x)

dx
(3.2)

which is the slope of the tangent line to the function at x. The second derivative

is the rate of change of the first derivative. The second derivative at x is defined
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Figure 3.2 Extreme points of a function where the derivative is zero.

by:

f ′′(x) =
df ′(x)
dx

=
d2f

dx2
(3.3)

A univariate function f for which the first derivative f ′(x) = 0 can be classified

as one of the three types of extreme points, as shown in Figure 3.2: (1) a point

x⋆ is a local minimum if the first derivative is zero f ′(x) = 0 and the second

derivative is positive f ′′(x) > 0; (2) a point x⋆ is a local maximum if the first

derivative is zero f ′(x) = 0 and the second derivative is negative f ′′(x) < 0; (3)

a point x⋆ is a saddle-point if the first and second derivatives are zero f ′(x) = 0

and f ′′(x) = 0. The gradient ∇f(x) of a multivariate function f(x1, . . . , xn) is

the vector in which each component is the partial derivative of f with respect

to that component:

∇f(x) =

(

∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)

(3.4)

The Hessian ∇2f(x) of a multivariate function f is the matrix of the second

partial derivatives of the function:

∇2f(x) =

⎡

⎢

⎢

⎣

∂2f(x)
∂x1∂x1

. . . ∂2f(x)
∂x1∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

. . . ∂2f(x)
∂xn∂xn

⎤

⎥

⎥

⎦

(3.5)

Similar to the univariate function, for a multivariate function the point x⋆ is a

local minimum if the gradient of the function is zero ∇f(x) = 0 and the Hessian

∇2f(x) is positive definite.

3.2.4 Gradient Computation

The derivative of a function can be computed numerically or analytically. When

it is available, the analytic derivation is exact and fast, whereas the numerical

computation is approximate and slow. We, therefore, derive the analytic gradient

for training neural networks and use the numerical gradient computation only
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for checking our implementation. There are several numerical finite difference

approximations of the derivative, the most common being the forward difference:

f ′(x) ≈ f(x+ ε)− f(x)

ε
(3.6)

backward difference:

f ′(x) ≈ f(x)− f(x− ε)

ε
(3.7)

and (two-sided) central difference, which is their average:

f ′(x) ≈ f(x+ ε)− f(x− ε)

2ε
(3.8)

Compared with the analytic derivation, the numeric approximation using the

central difference is helpful for debugging purposes when training a neural net-

work. In practice, we replace J(θ, x) with the loss of the neural network and

compute its derivative.

3.3 First-Order Methods

First-order methods use the gradient gt = ∇f(xt) to direct the search towards a

local minimum. We begin with gradient descent, in which we follow the direction

of the steepest descent.

3.3.1 Gradient Descent

Gradient descent minimizes a function based on iterative steps in the direction

of steepest descent, which is the opposite direction of the gradient, as shown in

Algorithm 3.1.

Algorithm 3.1 Gradient descent.

given objective function f(x)

given starting point x1 ∈ domf

given learning rate α

while not converged do:

gt = ∇f(xt) gradient

xt+1 = xt − αgt update

At every descent step, we compute the function’s gradient and update the

value x in the negative direction scaled by the learning rate α. So long as the

gradient is not zero, this improves for a smooth function and a sufficiently small

step size. Gradient descent terminates once a stopping criterion is met. The

stopping criteria may be set to a fixed number of iterations, or once the change

in the function values between successive iterations f(x ) − f(x ) is smaller
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than either a constant threshold s = ε or threshold which depends on the func-

tion magnitude s = ε‖f(xt)‖, or once the gradient magnitude is smaller than a

threshold ‖gt‖ < s.

Our primary choices in gradient descent methods are determining the descent

direction based on past gradients and choosing the step size. Gradient descent is

a simple and basic optimization algorithm most commonly used to train machine

learning models, specifically neural networks.

Consider the special case of applying gradient descent to logistic regression.

The objective function is:

J =
1

n

n
∑

i=1

L(ŷi, yi) + λ

2
‖w‖2 (3.9)

where ŷi = σ(wTxi+b) is the sigmoid of the dot product between the parameter

vector wT and the input point xi plus the bias term b. Using the negative log

likelihood loss:

L(ŷi, yi) = −yi log(ŷi)− (1− yi) log(1− ŷi) (3.10)

the gradient of the optimization objective with respect to the weight vector w

is:

∂J
∂w

=
1

n

n
∑

i=1

(ŷi − yi)xi + λw (3.11)

and the gradient of the optimization objective with respect to the bias b is:

∂J
∂b

=
1

n

n
∑

i=1

(ŷi − yi) (3.12)

We can then use gradient descent to find the optimal parameters.

When optimizing neural networks, the algorithm minimizes the total loss func-

tion f(x) = L(x) based on a step in the direction of steepest descent:

xt+1 = xt − αt∇L(x) (3.13)

In neural networks the total loss function is the sum of errors in classifying

each of the training examples. Examples of loss functions are the square loss:

L(x) = 1

m

m
∑

i=1

‖f(x, ai)− yi‖2 (3.14)

for weights x, examples ai, and ground-truth labels yi; the hinge loss function

is:

L(x) = 1

m

m
∑

i=1

max(0, 1− tf(x)) (3.15)

where t = 1 or t = −1 for classification, and the cross-entropy loss is:

L(x) = − 1

m

m
∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (3.16)
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Figure 3.3 When the step size is too big, gradient descent may diverge and never
converge.

where ŷ is the prediction.

There are two main computational problems with the gradient descent algo-

rithm applied to optimizing deep neural networks. The first problem is that the

total loss function L(x) with respect to the neural network weights x is the sum

of many individual losses L(x, ai), one for each training example ai:

L(x) = 1

m

m
∑

i=1

L(x, ai) (3.17)

and therefore computing the gradient with respect to the total loss is computa-

tionally expensive. The problem is solved by using only a mini-batch of samples at

each step or random samples, also known as stochastic gradient descent (SGD),

which we will discuss further. The second problem is computing the derivative of

the total loss with respect to all network weights x, as there are many weights.

The backpropagation algorithm solves this second problem.

3.3.2 Step Size

Having computed or approximated the gradient of the function f at x, our next

task is to choose the learning rate α for updating x. Notice that the step size

α‖gt‖ is the product of the learning rate α and the gradient vector length ‖gt‖.
If the step size is too big, then the optimization may never converge, as shown

in Figure 3.3. On the other hand, if the step size is too small, convergence may

be very slow, as shown in Figure 3.4. When the step size is just right, gradient

descent converges nicely to a local minimum in a relatively short time, as shown

in Figure 3.5.

The learning rate α is an important hyperparameter in training neural net-

works and may control how quickly the model learns. The learning rate may
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Figure 3.4 When the step size is too small, gradient descent convergence may be slow.

Figure 3.5 When the step size is just right, gradient descent converges nicely to a local
minimum.

be manually set to a small constant in most cases. However, we may want to

decrease the learning rate as training progresses to prevent overfitting for a vast

dataset or training on a GPU. This can be done by reducing the learning rate

by constant amounts or by using an adaptive learning rate schedule, decreasing

the learning rate by a decay factor as a function of iteration t:

αt = α1
1

1 + tβ
(3.18)

for β close to 0; or by exponential decay setting

αt = α1γ
t (3.19)
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Figure 3.6 Gradient descent convergence path using a backtracking line search step
size.

for γ close to 1; or by setting

αt = α1 exp
−βt (3.20)

Backtrack line search: A simple and practical algorithm for computing an

adaptive step size is the backtrack line search algorithm. The algorithm con-

tinuously halves α until a criterion is met, such as decreasing the value of the

function:

f(xt+1) ≤ f(xt) + βαgt (3.21)

for β ∈ [0, 1]. The result of backtrack line search is shown in Figure 3.6.

Exact line search: An alternative is to optimize for the best step size along

the negative gradient direction dt = − gt
‖gt‖ :

minimize
α

f(xt + αdt) (3.22)

Computing the derivatives of this optimization function may be performed by

setting the derivative to zero:

∇f(xt + αdt)
T dt = 0 (3.23)

where ∇dt
f(xt) = ∇f(xt)

T dt. Since dt+1 = − gt+1

‖gt+1‖ and the next gradient is

gt+1 = ∇f(xt + αdt) we get:

dt+1 = − ∇f(xt + αdt)

‖∇f(xt + αdt)‖
(3.24)

and therefore dTt+1dt = 0, which means that the directions of the gradients for

consecutive steps t and t+1 which follow optimized step sizes αt are perpendic-

ular, forming a zig-zag pattern. Optimizing for the exact step size is computa-

tionally expensive, and rarely used in practice.
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3.3.3 Mini-Batch Gradient Descent

In mini-batch gradient descent, the cost function is computed for each example in

a mini-batch of examples, and then the weights are updated using these gradients.

The size of the mini-batch can be fixed or variable. Mini-batch methods are a

natural way to parallelize the gradient computation since the gradient can be

computed in parallel on each of the k subsets. The mini-batch method is also

more robust to outliers since it is less likely that all k subsets will contain an

outlier.

The standard error of a sample mean μ̂ of a population mean μ is given

by SE(μ̂) = σ√
n

where σ is the standard deviation of the population and the

size n is the number of observations of the sample. To see this, note that if

x1 . . . xn are n independent samples, then the variance of T =
∑

i xi is nσ
2. The

variance of the sample mean μ̂ = T
n
is σ2

n
and the standard deviation of μ̂ is σ√

n
.

This motivates us to estimate the gradient from samples rather than the entire

dataset. For example, estimating the gradient from 100 samples instead of from

10, 000 samples reduces the standard error of the mean only by a factor of 10,

while reducing computation time and memory by a factor of 100. Optimization

algorithms that use the entire dataset are termed batch methods. In contrast,

mini-batch methods use a sample of the data, splitting the data into n
k
disjoint

sets of size k.

3.3.4 Stochastic Gradient Descent

Stochastic gradient descent (Robbins and Monro, 1951) is a special case of mini-

batch methods in which the mini-batch is of size 1, using a single random sample

ai at a time:

xt+1 = xt − αt∇xL(xt, a
i) (3.25)

where the learning rate, or step-size parameter, αt is dependent on iteration t

and ∇fi(xt) = ∇xL(xt, a
i), as shown in Algorithm 3.2.

Algorithm 3.2 Stochastic gradient descent.

given objective function f(x)

given starting point x1 ∈ domf

given {αt}Tt=1 learning rates

while not converged do:

Randomly shuffle training set a1, . . . , an

for i = 1, . . . , n do:

gt = ∇fi(xt) gradient of a single sample i

xt+1 = xt − αtgt update

Two differences between the SGD and gradient descent algorithms are that (1)

in SGD, we approximate the gradient using a single sample i by ∇f instead of
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all samples by ∇f , and (2) the learning rate αt is dependent upon the iterations

t rather than being a fixed α. SGD is also suitable as an online method for

handling a stream of data one example at a time. Notice that near saddle-points,

the gradient is close to zero, and therefore the step size in gradient descent may

be too small to be efficient. A common practice is to add noise εt to the gradient

descent update:

xt+1 = xt − αtgt + εt (3.26)

where εt ∼ N (0, σt). Stochastic gradient descent is by itself a noisy estimate

of the true gradient, which increases the chances of finding a global minimum.

Saddle-points in which the gradient is close to zero may cause gradient descent to

make a step which is too small. To alleviate this problem we can add noise εt ∼
N (0, σt) to the update in gradient descent xt+1 = xt−αgt+εt with σt decreasing

in time t. Fortunately, the noisy estimate of the gradient in SGD eliminates the

need to add noise to the gradient update, and also has the advantage of being a

very efficient approximation of the gradient. Averaging the outputs of multiple

steps of SGD, also known as stochastic weight averaging (Izmailov et al., 2018),

improves generalization. In practice, SGD may be implemented by going though

a random ordering of the training examples. A training epoch amounts to a pass

through the training data. The data are then re-randomized for the next epoch,

and so on, until convergence.

Since training neural networks may be a very time-consuming process, stochas-

tic gradient descent is often used in practice. This means that we sample the

gradient value at a new point and then update our parameters using this sam-

ple. If we want to use a mini-batch of samples, we need to compute the gradient

over the mini-batch. An excellent property of SGD is that these samples are un-

biased estimators of the actual gradient. This means that if we repeat updating

the parameters for many iterations, we will eventually get close to the optimal

parameters.

3.3.5 Adaptive Gradient Descent

The third problem with gradient descent is that it takes many steps in flat

regions since the directions of the gradients in consecutive iterations for optimal

step sizes are perpendicular, forming a slow zig-zag pattern.

A solution is to use the gradients from previous steps for faster convergence.

Adaptive gradient descent methods use gradients from earlier steps to compute

the current update. A critic of adaptive gradient descent methods (Wilson et al.,

2017) shows that they may result in solutions that are different from that of

gradient descent and SGD. A motivation for using the gradients computed in

previous iterations to affect the current update is to move faster along dimensions

of low curvature and slower along dimensions with oscillations.
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3.3.6 Momentum

One of the simplest adaptive gradient descent methods is called gradient descent

with momentum. The idea is to add a fraction of the previous step’s gradient

to the current step’s update, where the fraction is a parameter that is tuned.

This results in faster convergence in flat regions and slower convergence in steep

regions.

The momentum vector accumulates gradients from previous iterations for com-

puting the current gradient (Sutskever et al., 2013). In a weighted moving average

the weights decrease arithmetically, normalized by the sum of weights:

at =
nat + (n− 1)at−1 + · · ·+ at−n+1

n+ (n− 1) + · · ·+ 1
(3.27)

For st =
∑t

i=t−n+1 ai we have st+1 = st + at+1 − at−n+1. Therefore:

at+1 =
nat+1 + (n− 1)at + · · ·+ at−n+2

n+ (n− 1) + · · ·+ 1

= at +
nat+1 − at − · · · − at−n+1

n+ (n− 1) + · · ·+ 1
= at +

nat+1 − st,n
n(n+1)

2

(3.28)

In an exponentially weighted moving average the weights decrease exponen-

tially:

mt = αat + (1− α)mt−1

= αat + (1− α)(αat−1 + (1− α)(αat−2 + (1− α)(· · · )))
= α(at + (1− α)at−1 + (1− α)2at−2 + · · · )

(3.29)

and by unrolling the telescopic sum, the weight of at−i is α(1− α)i.

Setting a to be the gradient and choosing the parameter β = 1 − α ∈ [0, 1)

close to 1, and step sizes {αt}Tt=1, we compute the gradient for each iteration

using momentum as an exponentially weighted moving average of gradients:

gt = ∇f(xt)

mt = βmt−1 + gt

xt+1 = xt − αtmt

(3.30)

The special base of β = 0 reduces to gradient descent. The first problem with

momentum is that the step sizes may not decrease once we have reached close

to the minimum that may cause oscillations, which can be remedied by using

Nesterov momentum (Dozat, 2016) that replaces the gradient with the gradient

after computing momentum (Dozat, 2016):

gt = ∇f(xt − αβmt−1)

mt = βmt−1 + gt

xt+1 = xt − αtmt

(3.31)
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3.3.7 Adagrad

A second problem with momentum is that it updates all components of xt using

the same learning rate α. Therefore, adaptive subgradient descent, or Adagrad

(Duchi et al., 2011), uses adaptive updates for different components of the learn-

ing rate, making the method less sensitive to α:

gt = ∇f(xt)

st = βst−1 + g2t

xt+1 = xt − αt

gt√
st + ε

(3.32)

where g2t = gt⊙gt is a pointwise multiplication. If g2t is large then 1√
st+ε

is small.

This is a limitation since the learning rate may be monotonically decreasing,

decaying to zero limst→∞ 1√
st+ε

= 0.

Improvements upon Adagrad for overcoming this limitation include RMSProp

and AdaDelta:

• RMSProp (Tieleman and Hinton, 2012) is Adagrad using a weighted moving

average, replacing:

st = βst−1 + g2t (3.33)

with

st = βst−1 + (1− β)g2t (3.34)

• AdaDelta (Zeiler, 2012) is Adagrad using an exponential decaying average of

square updates without a learning rate, replacing:

xt+1 = xt − αt

1√
st + ε

gt (3.35)

with:

xt+1 = xt −
√
ut + ε√
st + ε

gt

ut+1 = γut + (1− γ)Δx2

(3.36)

where Δx2 = (xt+1 − xt)⊙ (xt+1 − xt) is a pointwise multiplication.

3.3.8 Adam: Adaptive Moment Estimation

Adaptive moment estimation, or Adam (Kingma and Ba, 2014), combines the

best of both momentum updates and Adagrad-based methods, as shown in Al-

gorithm 3.3. Like momentum updates, Adam does not rely on a pre-specified

learning rate, but it also does not suffer from the same flaw of overfitting the ini-

tial stage of training. Typical hyperparameter values are β1 = 0.9 and β2 = 0.99.

Several improvements upon Adam include the following:

• NAdam (Dozat, 2016) is Adam with Nesterov momentum.
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Algorithm 3.3 Adam: Adaptive moment estimation.

given starting point x1 ∈ domf

given learning rates {αt}Tt=1

given decay rates β1, β2 ∈ [0, 1) close to 1

given small ε > 0

init m0 = 0, v0 = 0

while not converged do:

gt = ∇f(xt) gradient

mt = β1mt−1 + (1− β1)gt first momentum

vt = β2vt−1 + (1− β2)g
2
t second momentum

xt+1 = xt − αt
mt√
vt+ε

update

• Yogi (Zaheer et al., 2018) is Adam with an improvement to the second mo-

mentum term, which is rewritten as:

vt = vt−1 − (1− β2)(vt−1 − g2t ) (3.37)

and replaced with:

vt = vt−1 − (1− β2)sign(vt−1 − g2t )g
2
t (3.38)

• AMSGrad (Reddi et al., 2018) is Adam with the following improvement:

v̂t = max(v̂t−1, vt)

xt+1 = xt −
αtmt√

v̂t

(3.39)

3.3.9 Hypergradient Descent

Hypergradient descent (Baydin et al., 2018) performs gradient descent on the

learning rate within gradient descent. This improves the convergence of the var-

ious gradient descent methods and may be applied to any adaptive stochastic

gradient descent method. Computing the derivative of f with respect to αt is

used to update:

ht =
∂f(xt)

∂α
= gTt

∂

∂α
(xt−1 − αgt−1)

αt+1 = αt − βht = αt + βgTt gt−1

(3.40)

Algorithm 3.4 shows the application to gradient descent.

The above methods are usually used with annealing schedules, which provide

a schedule of the learning rate, and are applied when the network’s performance

does not improve. The schedule may lower the learning rate when the optimiza-

tion gets stuck in a local minimum and increase the learning rate when the

network is progressing well.
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Algorithm 3.4 Hypergradient descent.

given objective function f(x)

given starting point x1 ∈ domf

given starting learning rate α1

given hypergradient learning rate β

while not converged do:

gt = ∇f(xt) gradient

ht =
∂f(xt)
∂αt

gradient

αt+1 = αt − βht update

xt+1 = xt − αt+1gt update

3.4 Second-Order Methods

First-order methods are easier to implement and understand but have a slower

convergence rate than second-order methods. Second-order methods use the first

and second derivatives of a univariate function or the gradient and Hessian of

a multivariate function to compute the step direction and size. Second-order

methods approximate the objective function using a quadratic, resulting in faster

convergence than first-order methods. The second-order information allows us to

identify a local minimum among extreme points.

3.4.1 Newton’s Method

Newton’s method for zero values or for finding roots of a function finds a first-

order approximation:

f ′(xt) =
f(xt)

xt − xt+1
(3.41)

xt+1 = xt −
f(xt)

f ′(xt)
(3.42)

as shown in Figure 3.7. Newton’s method is an iterative process. To find the root

of a function, the method takes the sample point and guesses a function value

at that position. It then makes a new guess based on the current guess at the

function value.

Similarly, Newton’s method for optimization or for finding roots of the deriva-

tive of a function finds a second-order approximation:

xt+1 = xt −
f ′(xt)

f ′′(xt)
(3.43)

as shown in Figure 3.8. Newton’s method is a modification of the secant method

applicable for finding the zero of the derivative of a function at a special point.

This special point is a point where the function’s derivative is equal to zero. This

is the method that is used by Newton’s technique for optimization.
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Figure 3.7 First-order fit: line.

Figure 3.8 Second-order fit: quadratic.

Our goal is to find x which minimizes the objective function f :

x⋆ = argmin
x

f(x) (3.44)

Given xt we would like to take a step toward xt+1 that is closer to x⋆:

f ′(xt+1) ≈ f ′(xt) + f ′′(xt)(xt+1 − xt) (3.45)

such that f ′(xt+1) = 0, resulting in Equation 3.43, defined for f ′′(x ) �= 0.



3.4 Second-Order Methods 51

3.4.2 Second-Order Taylor Approximation

The relationship between a function and its derivative is defined by:

f(b)− f(a) =

∫ b

a

f ′(x) dx (3.46)

and therefore:

f(x+ h)− f(x) =

∫ h

0

f ′(x+ a) dx (3.47)

and the Taylor series of f around x is:

f(x+ h) = f(x) +

∫ h

0

f ′(x+ a) dx

= f(x) +

∫ h

0

(

f ′(x) +
∫ a

0

f ′′(x+ b) db

)

da = · · ·

= f(x) +
f ′(x)
1!

h+
f ′′(x)
2!

h2 + · · · =
∞
∑

n=0

f (n)(x)

n!
hn

(3.48)

Plugging in a for x, and (x− a) for h, results in the Taylor series of f(x) around

a, given by:

f(x) =
∞
∑

n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)
1!

(x− a) +
f ′′(a)
2!

(x− a)2 + · · · (3.49)

The second-order Taylor approximation of a univariate function by a quadratic

is:

f(x) ≈ f(a) + f ′(a)(x− a) + f ′′(a)
1

2
(x− a)2 (3.50)

To find the minimum, we set the derivative with respect to x to zero and get:

f ′(x) ≈ f ′(a) + f ′′(a)(x− a) = 0 (3.51)

and solving for x:

x = a− f ′(a)
f ′′(a)

(3.52)

which is the update of Newton’s method, and is defined when f ′′(a) �= 0.

For a multivariate function f : R
n → R the approximation of the Taylor

expansion is:

f(x) ≈ f(a) +∇f(a)(x− a)T +
1

2
(x− a)T∇2f(a)(x− a) (3.53)

Denoting the gradient g and Hessian H:

∇f(a) = g

∇2f(a) =

(

∂2f(a)

∂xi∂xj

)

= H
(3.54)
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Table 3.1 Comparison of properties of gradient descent vs. Newton’s method.

Gradient descent Newton’s method

Order First Second

Convergence Linear Quadratic

Memory O(n) O(n2)

Computation O(n) O(n3)

Conditioning Degrades

Robustness More sensitive

we get

f(x) ≈ f(a) + (x− a)g +
1

2
(x− a)TH(x− a) (3.55)

Regrouping the second-order, first-order, and constant terms we get:

q(x) =
1

2
xTHx+ (g −Ha)Tx+ c (3.56)

Since the gradients ∇xb
Tx = b and ∇xx

TAx = (A+AT )x, and since the Hessian

is a symmetric matrix, solving for a critical point of the function by setting its

gradient to zero results in:

∇q(x) = Hx+ (g −Ha) = 0 (3.57)

The solution is x⋆ = a−H−1g, which is the Newton–Raphson update rule:

xt+1 = xt −H−1
t gt (3.58)

Notice that replacing the Hessian H with the identity I matrix times a scalar

α reduces Newton’s method to the special case of gradient descent since xt+1 =

xt − αgt.

For a deep neural network:

gt =
1

m
∇θ

∑

L(yi, ŷi)

Ht =
1

m
∇2

θ

∑

L(yi, ŷi)

θt+1 = θt −H−1gt

(3.59)

Table 3.1 and Figure 3.9 compare gradient descent with Newton’s method.

If the second derivative is unknown, we can approximate it by using the first

derivatives:

f ′′(x) ≈ f ′(x)− f ′(a)
x− a

(3.60)

which brings us to quasi-Newton methods, described next.
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Figure 3.9 Comparison of convergence path of gradient descent vs. Newton’s method
(illustrated by a shorter line through the function’s level sets).

3.4.3 Quasi-Newton Methods

Quasi-Newton methods, which provide an iterative approximation to the in-

verse Hessian H−1, avoid computing the second derivatives, avoid inverting the

Hessian and may also avoid storing the Hessian matrix. Quasi-Newton methods

typically converge faster than Newton methods. For a convex quadratic function:

f(x) =
1

2
xTHx+ bTx+ c (3.61)

where the Hessian H is positive definite, it holds that:

∇f(x) = Hx+ b

∇2f(x) = H
(3.62)

Therefore, the Hessian satisfies:

∇f(x)−∇f(y) = H(x− y) (3.63)

Multiplying both sides by Q = H−1, we get the secant condition:

Q(∇f(x)−∇f(y)) = x− y (3.64)

If the matrix Q satisfies the secant condition and the function f can be approxi-

mated by a quadratic function, then its inverse Hessian would be approximated

by Q. We initialize Q0 = I to the identity and iteratively update the matrix,

satisfying:

Qt+1(∇f(xt+1)−∇f(xt)) = xt+1 − xt (3.65)

To define the iterative updates, we first define the differences:

δt = xt+1 − xt

ht = gt+1 − gt = ∇f(x )−∇f(x )
(3.66)
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and let zt = Qtht. Next, we update the inverse Hessian approximation using the

following three methods: SR1, DFP, or BFGS. These methods are similar in that

they all begin by initializing the inverse Hessian to the identity matrix and then

iteratively updating the inverse Hessian. These three update rules differ in that

their convergence properties improve upon one another. The first method, called

an SR1 update, is a rank one correction and is defined by:

Qt+1 = Qt +
(δt − zt)(δt − zt)

T

(δt − zt)Tht

(3.67)

The second method for updating the inverse Hessian approximation is the

Davidon–Fletcher–Powell (DFP) correction (Davidon, 1991; Fletcher and Powell,

1963) and is defined by:

Qt+1 = Qt +
δtδ

T
t

hT
t δt

− ztz
T
t

hT
t zt

(3.68)

The third method updates the inverse Hessian approximation by the BFGS cor-

rection, defined by:

Qt+1 = Qt +
(ztδ

T
t ) + (ztδ

T
t )

hT
t zt

−
(

1 +
hT
t δt

hT
t zt

)

ztz
T
t

hT
t zt

(3.69)

In summary, quasi-Newton methods avoid computing the inverse HessianH−1

matrix and instead iteratively approximate. Each iteration involves O(n2) opera-

tions, without O(n3) operations such as solving linear systems or matrix–matrix

operations. The iterative algorithm is robust, with fast convergence.

Storing the inverse Hessian approximation matrix itself for large dimensions

may be prohibitive. Therefore, limited memory BFGS (L-BFGS) (Liu and No-

cedal, 1989) avoids storing the inverse Hessian approximation by unrolling the

approximation and using limited memory for storing updates. The L-BFGS ap-

proximates BFGS by storing only the last updates of δt, ht, and zt. Finally,

quasi-Newton methods are easy to implement.

3.5 Evolution Strategies

Rather than incrementally improving a single point toward a local minimum,

evolution strategies use a probability distribution and many sample points in

the search space or parameter space to find a local minimum, which may be eas-

ily distributed. An advantage of using a probability distribution is that it allows

the algorithm to escape local minima. The cross-entropy method stores a proba-

bility distribution over the search space and samples points from this probability

distribution. The algorithm proceeds iteratively: Each iteration samples from the

probability distribution and then updates the probability distribution to fit the

best samples by the cross-entropy. Typically, a multivariate normal distribution

is used as the probability distribution, maintaining a mean vector and covariance
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matrix. Neural evolution strategies use a probability distribution over the search

space as well; however, instead of fitting the probability distribution to the best

samples, it uses gradient descent where the gradient is computed from the sam-

ples (Salimans et al., 2017). Covariance matrix adaptation (Hansen, 2006) stores

a covariance matrix and updates a probability distribution iteratively based on

samples from a multivariate Gaussian distribution.

3.6 Summary

Gradient descent iteratively finds a local minimum by taking steps in the direc-

tion of the steepest descent. Three main problems with training neural networks

using gradient descent and their solutions are:

• The total loss function with respect to the neural network weights is a sum of

many individual losses for many samples. The solution is mini-batch or SGD.

• The derivative of the total loss is computed with respect to all network weights.

The solution is backpropagation.

• The directions of gradients for consecutive time steps which follow optimized

step sizes are orthogonal, forming a zig-zag pattern, which is slow, especially

in flat regions. The solution is adaptive gradient descent.

Specifically, adding momentum avoids the zig-zag directions when using the

optimal step size and improves progress toward the local minimum. Adaptive

methods update the learning rate in each dimension individually and are com-

bined with momentum. Stochastic gradient descent approximates the gradient

by random samples, which is highly efficient for training neural networks with

many examples, and its randomness improves optimization. Using the second

derivative speeds up convergence, and quasi-Newton methods approximate the

second derivative when unavailable or approximate the inverse Hessian, avoid-

ing its computation and storage. In contrast to gradient descent methods, which

advance a single point toward a local minimum, evolution strategies update a

probability distribution, from which multiple points are sampled, lending itself

to a highly efficient distributed computation.



4 Regularization

4.1 Introduction

Regularization is a technique that helps prevent overfitting by penalizing the

complexity of the network. In this chapter, we will describe three forms of regu-

larization: (1) penalty term, which is adding a penalty term to the cost function,

which encourages the model to decrease the weights and has fewer parameters

and a simpler structure; (2) dropout, which randomly removes a percentage of

neurons in each layer from the network – this causes the network to be less ac-

curate but also makes it more robust to overfitting; and (3) data augmentation,

which generates new training data points that are similar to the existing train-

ing data points, though not identical. Overfitting occurs when a model is too

closely tailored to the training data and does not generalize well to unseen data;

augmentation may avoid overfitting and allow the model to generalize better to

new data.

Overfitting data, as shown in Figure 4.1, happens when the model is too com-

plex and captures noise in the data. To avoid overfitting, we may (1) add a

penalty term to the loss function; (2) use dropout, which is a regularization

technique that randomly sets some of the network activations to zero; or (3)

augment the data. These three methods are all forms of regularization whose

goal is to prevent the network from overfitting the training data.

Figure 4.2 shows the improvement in image classification performance as ef-

ficient methods were developed for training deeper neural networks. This figure

shows the error of the best-published network for each year, while Figure 4.3

shows the corresponding number of neural network layers. As shown in the fig-

ures, the error decreases as the number of neural network layers increases. This

continues until a certain depth, at which adding residual connections between

layers is required to continue this trend and avoid vanishing gradients.

4.2 Generalization

Training data is a sample from a population. We want our neural network model

to generalize well to unseen test data drawn from the same population. Specifi-

cally, the generalization gap G is defined as the difference between the expected
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Figure 4.1 Underfitting (left): The model is not complex enough to capture the
underlying pattern in the data. Overfitting (center): The model is too complex and
captures noise in the data. Regularization (right): The green line represents a model
which is neither too simple nor too complex. Regularization helps prevent overfitting
by penalizing the complexity of the model.

Figure 4.2 ImageNet classification error by year.

loss when sampling from the population P, which the test error may approxi-

mate, and the empirical loss, which is the training error of the training samples

(xi, yi) for i = 1, . . . ,m:

G(f(X,W )) = E(X,Y )∼P(L(yi, f(xi,W ))− 1

m

m
∑

i=1

L(yi, f(xi,W ))) (4.1)

We can use the generalization gap to measure how well our neural network

model fits the training data. If the generalization gap is low, the neural network

model is a good fit for the training data. If the generalization gap is high, the

neural network may be overfitting.
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Figure 4.3 Number of neural network layers for corresponding best models on
ImageNet by year.

Learning curves plot the test accuracy as a function of the amount of training

data (X,Y ) for various models. Adding more training data (X,Y ) increases the

generalization accuracy up to a limit, reducing the generalization gap as expected

E(X,Y )∼P by Equation 4.1.

4.3 Overfitting

A neural network model tailored to training data and does not generalize well

to unseen test data has a high generalization error and is said to be overfitting

the data. The training error decreases as we increase the network complexity for

a given dataset, and the test error also decreases until a certain point and then

increases due to overfitting. If we increase the network complexity even further,

then at the limit, the test error begins to decrease again, a phenomenon that is

known as double descent (Belkin et al., 2019). Unless we have sufficient data, a

very complex neural network may fit the training data very well at the expense of

a poor fit to the test data, resulting in a large gap between the training error and

test error, which is overfitting. Since training data is a population sample, it may

be overfitting; applying our model to test data is the way to detect overfitting.
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4.4 Cross Validation

Cross validation allows us to compute the mean and variance of the general-

ization error. We randomly split the data into k folds and iteratively take the

training data to be k− 1 out of k folds for building a model that is tested on the

remaining fold. After testing each model, we compute the mean and variance of

the generalization error over all k models.

The mean generalization error is the average generalization error over all k

models and is a good indicator of how well a model performs on unseen data. A

common practice is to use cross validation to select hyperparameters for training

a model. For example, when training a neural network with stochastic gradient

descent (SGD), we can use cross validation to find the optimal learning rate and

momentum. We can also use cross validation to select features for building a

model. We can build many models with different subsets of features and then

compute their mean and variance of the generalization error to determine which

subset performs best.

4.5 Bias and Variance

Practical steps in training neural networks include reducing bias by training a

deeper and wider network and reducing variance by obtaining more data or by

regularization. Our goal is to reduce both bias and variance. In order to reduce

the bias, we can train a deeper and wider network with more parameters to learn

from the training data. In other words, a deeper and wider network can learn

more complex functions from the training data. In order to reduce the variance,

we can obtain more data or use regularization. The more data we have, the less

variance in our model. Regularization is a method of preventing overfitting by

penalizing complex models.

4.6 Vector Norms

We define vector norms before discussing regularization using different norms.

For all vectors x, y and scalars α: (1) all vector norms of a non-zero vector are

a positive scalar; (2) norms maintain the triangle inequality; and (3) all vectors

and scalars have a rescaling property, as follows:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖
3. ‖αx‖ = |α|‖x‖
Special norms are illustrated in Figure 4.4; these are the ℓ1 norm defined as:

‖x‖1 = |x1|+ · · ·+ |xn| =
n
∑

|xi| (4.2)
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Figure 4.4 Unit circle {x ∈ R
2 : ‖x‖ = 1} for each vector norm: ℓ1, ℓ2, ℓ∞, ℓp.

the ℓ2 norm:

‖x‖2 =
√

x2
1 + · · ·+ x2

n =

√

√

√

√

n
∑

i=1

x2
i (4.3)

and the ℓ∞ norm:

‖x‖∞ = max
i

(|x1|, . . . , |xn|) = max
i

|xi| (4.4)

which is the maximum norm – the maximum possible distance between any two

vectors. The ℓ∞ norm is also the maximum of all norms. More generally, we may

define the ℓp norm by:

‖x‖p =

(

n
∑

i=1

(‖xi‖p)
)

1
p

(4.5)

for 1 ≤ p ≤ ∞. Notice that the number of non-zero elements in a vector, often

informally referred to as the ℓ0 “norm,” is not a norm by the properties above.

4.7 Ridge Regression and Lasso

We formulated machine learning as an optimization objective of the general form:

J(θ) =
1

m

m
∑

i=1

L(fθ(xi, yi)) + λR(θ) (4.6)

We may make multiple design choices regarding this general optimization objec-

tive: (1) define the hypothesis class or model denoted by the function fθ(x
i, yi)

and it’s parameters θ; (2) define the loss function denoted by L; and (3) define the

type of regularization function R(θ). For example, choosing a linear model with

a squared loss function and an ℓ2 regularization term results in the objective:

Jridge(θ) =
1

m

m
∑

i=1

(θTxi − yi)2 + λ‖θ‖ (4.7)

also known as ridge regression, where λ > 0 is a regularization hyperparameter.

Ridge regression is a form of linear regression that penalizes the squared distance
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between the predicted and observed values, which may also be written in matrix

form as:

Jridge(θ) =
1

m
(Xθ − Y )T (Xθ − Y ) + λ‖θ‖ (4.8)

where X is a d×m matrix whose columns are the data points, and Y is an n×1

vector of labels. To find the minimum, we compute the derivative of the loss with

respect to the parameters θ:

∇θJridge =
2

m
XT (Xθ − Y ) + 2λθ (4.9)

and set the gradient to zero:

∇θJridge =
1

m
XTXθ − 1

m
XTY + λθ = 0 (4.10)

which has an analytic solution:

θ = (XTX + nλI)−1XTY (4.11)

A different choice of objective is called Lasso, which is a linear regression model

that penalizes the absolute value of the difference between the prediction and

the mean.

4.8 Regularized Loss Functions

Regularized loss functions is used in neural networks to prevent overfitting. This

type of regularization is also called weight decay for its effect of decreasing the

weights. Regularized loss functions are used to penalize the network for large

weights and large activations. A regularization term R(W ) is added to the loss

function:

1

m

m
∑

i=1

L(yi, fW (xi)) +R(W ) (4.12)

where R(W ) = λ‖W‖p for a regularization parameter λ > 0, which is a scalar

and an ℓp norm. The regularization parameter λ controls how much we want to

penalize large weights. If λ = 0, then no regularization occurs. If λ = 1, then

all weights are penalized equally. A value between 0 and 1 gives us a trade-

off between fitting complex models and fitting simple models. The value of the

hyperparameter λ may be set by cross validation. Specifically, by splitting the

training data into multiple folds k, training k−1 folds and validating on the kth

fold for a set of possible λ values. This results in k values of the loss for each

different value of λ. We can then compute the average of the k losses for each λ

value, and choose the best λ for our data.

Common types of regularization are ℓ1 and ℓ2. The effect of each of these norms

when used for regularizing fully connected neural networks may be interactively
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Figure 4.5 ℓ1 regularization. The solution is called a sparse solution since the diamond
shape of the ℓ1 norm intersects with the loss function on a sharp point where
coefficients are zero. In this example θ1 = 0.

visualized (Smilkov and Carter, n.d.). Setting p = 1 results in the ℓ1 norm, and

is called ℓ1 regularization. The effect of ℓ1 regularization is a solution with zero

coefficients, also called a sparse solution, since the diamond shape of the norm,

as shown in Figure 4.5, intersects with the loss function on a sharp point where

coefficients are zero.

Setting p = 2 results in the ℓ2 norm, called ℓ2 regularization. The difference

between ℓ1 and ℓ2 regularization is that ℓ1 regularization is a penalty on the

sum of absolute weights, which promotes sparsity, whereas ℓ2 regularization is a

penalty on the sum of the squares of the weights.

The effect of adding a regularization term to a neural network loss may be

observed directly by the change in the update step of SGD. Consider the gradient

of the ℓ2 regularized loss with respect to a single random sample in SGD:

L(yi, fW (xi)) + λ‖W‖2 (4.13)

The weight update is then:

Wt+1 = Wt − α∇Wt
(L(yi, fWt

(xi)) + λ‖Wt‖2)
= Wt(1− 2αλWt)− α∇Wt

(L(yi, fWt
(xi))

(4.14)

which demonstrates the effect of shrinking the weights.

4.9 Dropout Regularization

Dropout is a regularization technique used in neural networks to prevent over-

fitting (Srivastava et al., 2014). It is a technique that randomly removes a per-

centage of the neurons in each layer from the network. This causes the network

to be less accurate, making it more robust to overfitting.
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Figure 4.6 Fully connected neural network.

Figure 4.7 Dropout regularization. Activations are randomly removed with probability
p at training time.

Activations are randomly set to zero during training. Testing is done without

dropout. For layer l, set dropout probability pl. For each activation alj = aljI
l
j

for j = 1, . . . , nl, where:

I lj =

{

0 with probability pl
1

1−pl
with probability 1− pl

(4.15)

such that activations that remain stand in for activations dropped out.

Figure 4.6 shows a fully connected neural network before dropout. Figure 4.7

shows the network after dropout where activations (in red) are randomly removed

with probability p at training time. The dropout rate p is a hyperparameter.

4.9.1 Random Least Squares with Dropout

Dropout is not unique to neural networks and was used earlier in least squares.

Random least squares with dropout is equivalent to ridge regression:

LI(β) =
1

2

m
∑

i=1

(yi −
k
∑

Xi,jIi,jβj)
2 (4.16)
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where

Ii,j =

{

0 with probability p
1

1−p
with probability 1− p

(4.17)

set:

E

(

∂LI(β)

∂β

)

= −XT y +XTXβ +
p

1 + p
Dβ = 0 (4.18)

with D = diag{‖x1‖2, . . . , ‖xk‖2}. The solution is β̂ = (XTX + p
1+p

D)−1XT y,

which is ridge regression.

4.9.2 Least Squares with Noise Input Distortion

Least squares with noise input distortion is also equivalent to ridge regression:

LN (β) =
1

2

m
∑

i=1

(yi −
k
∑

j=1

(Xi,j + ni,j)βj)
2 (4.19)

We add random noise to the prediction N(0, λ), by setting:

E

(

∂LN (β)

∂β

)

= −XT y +XTXβ + λβ = 0 (4.20)

where E(n2
i,j) = λ. The solution is β̂ = (XTX + p

1+p
λ)−1XT y, which is ridge

regression.

4.10 Data Augmentation

Data augmentation is the process of generating new data points by transform-

ing existing ones. This is done to improve the performance of machine learning

algorithms. For example, if a dataset has many images of cars, data augmenta-

tion might generate new images by rotating them or changing their color. The

augmented training data is then used to train a neural network.

Data augmentation may be used to reduce overfitting. Overfitting occurs when

a model is too closely tailored to the training data and does not generalize well

to new data. Data augmentation can be used to generate new training data

points that are similar to the existing training data points but are not identical

copies. This helps the model avoid overfitting and generalizing better to new

data. Since data augmentation adds more data for training, it may be used as a

regularization technique for reducing variance in models.

We augment the training data by replacing each example pair (xi, yi) with a

collection {x∗b
i , yi}Bb=1, where each x∗b

i is a version of xi. Transformations com-

monly used for data augmentation include rotation, reflection, translation, shear,

crop, color transformation, and added noise.
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4.11 Batch Normalization

Exploding gradients is a problem that may occur when training a neural network.

They occur when the gradient of the cost function with respect to the network’s

weights is too large. This can cause the weights to change too quickly and cause

the neural network to diverge. Vanishing gradients is a phenomenon in neural

networks where the gradient of the error function becomes small or zero. This

means that the network cannot learn anymore and is stuck at a local minimum.

Covariate shift occurs in neural networks when the magnitudes of the inputs to

a layer change during training, making it challenging to learn the weights of a

subsequent layer while accounting for the change in magnitude of the inputs.

Batch normalization is a technique for training neural networks that are used

to counteract the problems of exploding and vanishing gradients, as well as co-

variate shift. It does this by scaling the input data by a factor of 1√
n
, where n

is the batch size. This makes the gradient values more stable and prevents them

from changing too quickly.

4.12 Summary

Regularization is a technique that can be used to prevent overfitting. Regulariza-

tion can be achieved by adding a penalty term to the cost function. The penalty

term is usually a function of the number of parameters in the model. Dropout and

data augmentation are also forms of regularization in neural networks because

these methods help to prevent overfitting. Dropout is a technique that randomly

sets several weights in a neural network to zero. This technique helps to pre-

vent overfitting by reducing the variance of the network. Data augmentation is

a technique that involves modifying the input data to the neural network by

applying random transformations. This technique also helps prevent overfitting

by increasing the size of the training set.
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5 Convolutional Neural Networks

5.1 Introduction

The first step in the visual pathway is the retina, which consists of a layer of pho-

toreceptor cells: the rods and cones. The retina’s output is an optic nerve consist-

ing of one million fibers connected to regions of the brain. Each of these regions is

connected in turn to other regions. The primary visual cortex reacts to low-level

visual stimuli such as oriented lines. Hubel and Wiesel won the Nobel Prize for

mapping the function of receptor cells along the visual pathways of cats from the

retina to the cortex (Hubel and Wiesel, 1968). Processing proceeds in a hierar-

chical fashion of layers (Felleman and Van Essen, 1991). Fukushima introduced

the Neocognitron architecture (Fukushima, 1988), which led to the development

of modern convolutional neural networks (CNNs). Initially, computer vision re-

searchers handcrafted filters, whereas optimizing CNNs automatically calculates

the weights of filter banks in multiple layers by backpropagation. Similarly, deep

learning researchers initially handcrafted CNN architectures, whereas neural ar-

chitecture search (NAS) automatically finds CNN architectures from basic layers

and building blocks by optimization. Finally, computational power allows gener-

ating entire wirings of graph neural networks (GNNs) and vast amounts of data

allow training vision Transformer networks without handcrafting the inductive

bias into the network architecture. Convolutional neural networks are a special

case of these vision Transformer networks, which supersede CNN performance on

common tasks and benchmarks. Today, 60 years after Hubel and Wiesel’s (1959)

discoveries, there is an understanding of the visual pathways in the human brain,

and common neural networks trained on millions of images outperform humans

in visual recognition.

5.1.1 Representations Sharing Weights

The most successful deep learning representations share weights: CNNs, de-

scribed in this chapter, share weights across space; recurrent neural networks

(RNNs), described in Chapter 6, share weights across time; and GNNs, described

in Chapter 7, share weights across neighborhoods.

In a fully connected neural network, as presented in Chapter 2, the dimension

of the matrix of weights between two layers with n activation units each is



70 5 Convolutional Neural Networks

the multiplication of the layer sizes, n× n. Performing a computation with time

complexity square in the number of activation units in a layerO(n2) is prohibitive

for wide layers. Images are regular grids of pixels, and it is beneficial to perform

the same operation locally on different parts of the image. Using a local filter and

sharing these weights spatially across the image reduces the number of weights

to a constant.

Convolutional neural networks reduce the number of weights by sharing weights

for different parts of an image. They may learn many sets of weights, namely

multiple filters, for each layer in the neural network, thereby capturing multiple

features such as edges, corners, and textures. Each layer captures features at dif-

ferent scales, from low-level features, such as edges, through mid-level features,

such as textures, to high-level features, such as entire objects.

When we process data of a particular type, such as images with locality, or

when the mapping between input and output spaces has known properties, such

as invariance to transformations, incorporating this inductive bias into the neu-

ral network architecture, for example, in the form of a CNN, makes sense. For

example, image pixels depend on neighboring pixels or fragments, and objects

are detected or classified with the same label under affine transformations.

5.2 Convolution

Convolution is the process of multiplying two functions together. A very simple

example of convolution is multiplying an image with a kernel. The convolution

kernel is a function that is typically represented by a small matrix that operates

on the image. Specifically, the kernel is applied to the image by local pointwise

multiplication of the image with the kernel and by summing the contributions.

The convolution of an image with a kernel is a weighted average of the image.

5.2.1 One-Dimensional Convolution

The definition of the discrete one-dimensional convolution of two functions f and

g is:

(f ⋆ g)(i) =

s
∑

u=−s

g(u)f(i− u) (5.1)

Figure 5.1 illustrates the process of sliding a 3 × 1 filter k over a 10 × 1 input

x, and for each position multiplying corresponding values of the input with the

filter and taking their sum, resulting in an output value. For example, yu+1 =
∑3

i=1 kixi+u−1 for u = 1, . . . , 8, where we omit the reflection of the filter.

Convolution padding may be performed so that the output size is the same

as the input size. Figure 5.2 illustrates zero-padding by padding the boundaries

with zeros. Figure 5.3 illustrates reflection-padding by padding the boundaries

using values that are a reflection of the signal.
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Figure 5.1 One-dimensional convolution.

Figure 5.2 One-dimensional convolution with zero-padding.

Filtering with the identity kernel, for example k = [0, 1, 0], results in the output

being equal to the input, as shown in Figure 5.3. Filtering with an averaging

kernel, for example, k = 1
3 [1, 1, 1], results in the output is equal to a local average

of the input. Notice that we normalize the filter by dividing each filter coefficient

by the sum of the coefficients.

Filters are commonly used for blurring or sharpening a signal. For example,

the filter kernel k = 1
4 [1, 2, 1] approximates a Gaussian blur, whereas the filter

kernel k = [−1, 2,−1] sharpens the signal.

Figure 5.4 shows an example of a one-dimensional convolution, with a bias of

+1, followed by applying a non-linear function, the rectified linear unit (ReLU)

function, pointwise.

5.2.2 Matrix Multiplication

Convolution is a linear operation that may be represented by matrix multiplica-

tion. In one dimension we represent a filter k using a Toeplitz matrix (Böttcher
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Figure 5.3 One-dimensional convolution with the identity filter.

Figure 5.4 Example of one-dimensional convolution with bias, followed by a ReLU.

and Grudsky, 2005) such that the matrix–vector product Kx is the convolution

operation k ⋆ x. The matrix K may be expressed as a linear combination of di-

agonal matrices, with 1s on the diagonal, multiplied by the filter weights. For a

3 × 1 filter k = (k1, k2, k3)
T : The first matrix S1 has 1s on the diagonal below

the main diagonal and is multiplied by the filter coefficient k1; the second matrix

S2 has 1s on the main diagonal and is multiplied by k2; and the third matrix S3

has 1s on the diagonal above the main diagonal and is multiplied by k3:

y = k ⋆ x = Kx =
3
∑

i=1

kiSix (5.2)

The derivative of the output y with respect to each of the kernel weights is:

dy

dki
= Six (5.3)
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For example, convolution of a filter k = (k1, k2, k3)
T with a signal x =

(x1, . . . , x5)
T expressed as y = k ⋆ x is equivalent to multiplication y = Kx by

a band diagonal matrix K called a Toeplitz matrix, with the kernel k replicated

along the diagonal and all other elements zero:

⎡

⎣

y1
y2
y3

⎤

⎦ =

⎡

⎣

k1 k2 k3 0 0

0 k1 k2 k3 0

0 0 k1 k2 k3

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎣

x1

x2

x3

x4

x5

⎤

⎥

⎥

⎥

⎥

⎦

(5.4)

In this case the input dimension is 5, whereas the output dimension is 3. To have

the input and output dimensions be the same, we pad the signal x. One form of

padding is zero-padding by adding zeros to the beginning and end of the signal

and adding the corresponding rows and columns of the matrix:

⎡

⎢

⎢

⎢

⎢

⎣

y1
y2
y3
y4
y5

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

k1 k2 k3 0 0 0 0

0 k1 k2 k3 0 0 0

0 0 k1 k2 k3 0 0

0 0 0 k1 k2 k3 0

0 0 0 0 k1 k2 k3

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

x1

x2

x3

x4

x5

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5.5)

Padding results in inputs and outputs of equal dimensions, which may be con-

venient to work with.

In this case we perform convolution of the filter with the signal by sliding

the filter across the signal one step, or stride, at a time. We can also perform

the convolution with different strides, for example with a stride of two in which

case the kernel matrix is

[

k1 k2 k3 0 0

0 0 k1 k2 k3

]

. Increasing the stride to two

decreases the output length by a factor of two. Overall, the number of weights to

be considered is reduced significantly, from the entire matrix dimensions to just

the kernel’s size. In contrast, in a fully connected neural network, the number

of weights between two adjacent layers is the multiplication of the number of

activation units in the layers.

5.2.3 Two-Dimensional Convolution

The two-dimensional convolution of a filter f with a signal g is defined as:

(f ⋆ g)(i, j) =
s
∑

u=−s

s
∑

v=−s

g(u, v)f(i− u, j − v) (5.6)

A two-dimensional input X representing an image may be represented as a

regular two-dimensional grid with local connectivity of each pixel connected to

its neighbors, as shown in Figure 5.5.
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Figure 5.5 Regular two-dimensional grid.

Figure 5.6 Two-dimensional convolution.

For such a two-dimensional input X representing an image, we first flatten

X into a vector x by concatenating the rows of X into a single vector x. The

convolution of the two-dimensional filter K with the two-dimensional input X

is equivalent to a matrix–vector multiplication. For example, for a 3 × 3 filter k

and a 7×7 image X flattened into a vector x, the result of convolution is a 5×5

image Y , as shown in Figure 5.6, where each coefficient is a linear combination

of nine products of the kernel weights centered upon the corresponding image

position.

For example, the value of the output y22 computed by centering the filter k

on input x22 is:

y22 = k11x11 + k12x12 + k13x + · · ·+ k x . (5.7)
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As another example, consider the matrix form of the convolution of a two-

dimensional 3× 3 filter:

k =

⎡

⎣

k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤

⎦ (5.8)

with a 5× 5 image:

x =

⎡

⎢

⎢

⎢

⎢

⎣

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

⎤

⎥

⎥

⎥

⎥

⎦

(5.9)

which is expressed as multiplication of a block Toeplitz matrix K:

K =

⎡

⎣

K1 K2 K3 0 0

0 K1 K2 K3 0

0 0 K1 K2 K3

⎤

⎦ (5.10)

whose blocks are themselves Toeplitz matrices Ki for i = 1, 2, 3:

Ki =

⎡

⎣

ki1 ki2 ki3 0 0

0 ki1 ki2 ki3 0

0 0 ki1 ki2 ki3

⎤

⎦ (5.11)

with the flattened vector representation x = (x11, . . . , x55)
T of the image. In-

creasing the stride from one to two in each dimension decreases the output size

by a factor of two in each dimension. Similarly to one-dimensional convolution,

padding can be done with zeros, as shown in Figure 5.7, or reflected values in

two-dimensions, as shown in Figure 5.8.

Figure 5.9 shows an example of two-dimmensional convolution followed by

applying the ReLU. The result of this operation is finding a value of 1 surrounded

by zeros.

Considering that an image may contain millions of pixels, the number of

weights between layers using a fully connected network may increase to billions,

whereas sharing all weights using a CNN results in a small constant number

of weights. Between every two layers of the CNN we can learn multiple two-

dimensional filters, and for each filter have a constant number of weights. The

convolution of a filter with each local neighborhood of the image results in a

response that captures diverse features from multiple filters and features at mul-

tiple scales from multiple network layers.

Before convolutional neural networks, image filters were manually designed

for specific purposes. Examples of well-known filters include the box filter, ap-

proximation of Gaussian blur, sharpen filter, horizontal and vertical Sobel edge

detection, and Prewitt edge detection. A discrete approximation of the Gaussian

filter is given by a two-dimensional matrix. For a 3 × 3 discrete approximation,
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Figure 5.7 Two-dimensional convolution with zero-padding.

the filter coefficients are:

1

16

⎡

⎣

1 2 1

2 4 2

1 2 1

⎤

⎦ =
1

4

⎡

⎣

1

2

1

⎤

⎦⊗ 1

4

[

1 2 1
]

(5.12)

5.2.4 Separable Filters

In special cases such as the approximation of a Gaussian filter, above, two-

dimensional convolution is equivalent to the outer product of two one-dimensional

filters, as shown in Figure 5.10. In such cases the computation is more efficient:

Performing two one-dimensional convolutions of size k with an image of size n×n

takes time O(n2k), whereas performing one two-dimensional convolution of size

k × k takes time O(n2k2).

5.2.5 Properties

The convolution operation is commutative, associative, distributive, and differ-

entiable:

• Commutative: f ⋆ g = g ⋆ f
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Figure 5.8 Two-dimensional convolution with reflection-padding.

• Associative: f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h

• Distributive: f ⋆ (g + h) = f ⋆ g + f ⋆ h

• Differentiation: d
dx
(f ⋆ g) = df

dx
⋆ g = f ⋆ dg

dx

5.2.6 Composition

Repeated convolutions with a small kernel are equivalent to a single convolution

with a large kernel; however, they are more efficient. For example, two repeated

convolutions with a 3× 3 kernel may be equivalent and more efficient than a 2D

convolution with a 5 × 5 kernel, and three repeated convolutions with a 3 × 3

kernel may be equivalent and more efficient than 2D convolution with a 7× 7

kernel. An example of inputs and outputs of a repeated convolution with a 3× 3

kernel are shown in Figure 5.11.

5.2.7 Three-Dimensional Convolution

Images are often represented by three color channels of red, green, and blue

(RGB). Two-dimensional convolution can be performed on each channel sepa-

rately, as shown in Figure 5.12, or a three-dimensional filter can be convolved
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Figure 5.9 Two-dimensional convolution followed by a ReLU.

with the 3D volume consisting of the three channels, as shown in Figures 5.13

and 5.14.

5.3 Layers

5.3.1 Convolution

Convolution of an n × n × 3 color image with a k × k × 3 filter, with padding,

results in an n× n output, as shown in Figure 5.15. Convolution of an n× n× 3

color image with four such filters, with padding, results in an n× n× 4 volume

of activations, as shown in Figure 5.16. Convolution of an n× n× 3 color image

with f filters, with padding, results in an n × n × f volume of activations, as

shown in Figure 5.17.

Each set of such filtering operations constitutes the linear part of a convolution

layer. Repeated filtering may increase the number of channels. As described next,

a common way to reduce the spatial dimension is by pooling.

5.3.2 Pooling

Pooling is an operation that reduces the dimensionality of the input by tak-

ing a function value from a set of locations. Max pooling takes the maximum

over image patches, for example over 2 × 2 grids of neighboring pixels m =

max{x1, x2, x3, x4}, reducing dimensionality to half in each spatial dimension,

as shown in Figure 5.18.
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Figure 5.10 Two-dimensional convolution with separable filters.

One-Dimensional Convolution
One-dimensional convolution with f filters also allows reducing the number of

channels, as shown in Figure 5.19.

5.4 Example

Combining the above components in sequential layers of convolution and non-

linear functions followed by pooling results in a very simple CNN architecture, as

shown in Figure 5.20. In this example, the input is a 28×28 grayscale image, and

the output is 1 of 10 classes, such as the digits 0–9. The first convolutional layer

consists of 32 filters, such as 5×5 filters applied to the image with padding, which

yields a 28× 28 times32 volume. Next, a non-linear function, such as the ReLU,

is applied pointwise to each element in the volume. The first convolution layer of

the network shown in Figure 5.20 is followed by a 2× 2 max pooling operation

that reduces dimensionality to half in each spatial dimension, to 14×14×32. The

second convolutional layer increases dimensionality to 14 × 14× 64 by applying

a second set of 64 filters, such as 3 × 3 filters, and the second pooling layer

reduces dimensionality, again to half in each dimension, to 7 × 7 × 64. The
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Figure 5.11 Repeated convolutions with a 3× 3 kernel are equivalent to a single
convolution with a 7× 7 kernel, and more efficient.

resulting volume is then flattened to form a 3, 136 dimensional vector which is

fed into two fully connected layers. The first fully connected layer consists of

1, 024 activations, followed by a second fully connected layer with 10 activations,

one for each output class.

5.5 Architectures

Convolutional Neural Network
We composed a CNN using filters and convolutional and pooling layers. The

simple convolutional neural network example described above consists of a few

convolutional layers. The Neocognitron (Fukushima, 1988) introduced CNNs.
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Figure 5.12 Two-dimensional convolution with three channels.

A deeper network of eight layers may resemble the cortical visual pathways

in the brain (Cichy et al., 2016). Early implementations of CNN architectures

were handcrafted for specific image classification tasks. These include LeNet

(LeCun et al., 2010), AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan

and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015) and Inception (Szegedy

et al., 2016). Figure 5.21 schematically illustrates a CNN with multiple layers

and the connections between volumes of activations.

ResNet
The deep residual neural network (ResNet) architecture (He et al., 2016a,b),

introduced skip connections between consecutive layers, as shown in Figure 5.22.

Skip connections allow training deeper neural networks by avoiding vanishing

gradients. The ResNet architecture enables training very deep neural networks
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Figure 5.13 Three-dimensional convolution with three channels.

with hundreds of layers. The original ResNet with skip connections between

layers is shown in Figure 5.23. In a neural network, the activations are the layer

outputs:

al+1 = f(W l, al) (5.13)

where f is the non-linear function, W l the weights of layer l, and al, the input

activations to layer l. In a ResNet, due to the skip connections, the activations

are the sum of the previous activations and the layer outputs:

al+1 = al + f(W l, al) (5.14)

Adding a new layer to a neural network with a skip connection does not reduce

its representation power. Adding a residual layer results in the network repre-

senting all the functions that the network was able to represent before adding the
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Figure 5.14 Three-dimensional convolution.

layer plus additional functions, thus increasing the space of functions. A neural

network is a composition of functions f with a linear part and a non-linear part.

For a three-layer network, the composition is:

F (x) = f(f(f(x))) (5.15)

A ResNet is a composition of functions where each function is the sum f(x) +

x, and each layer represents a residual f(x) − x. For a three-layer ResNet the

function is:

F (x) = f(f(f(x) + x) + (f(x) + x)) + f(f(x) + x) + (f(x) + x) (5.16)

DenseNet
A DenseNet (Huang, Liu, van der Maaten and Weinberger, 2017) layer concate-

nates the input x and output f(x) of each layer to form the next layer [f(x), x].

Since a neural network is a composition of functions this results in a dense con-

nection between each layer and its previous layers. For a three-layer network the

composition is:

F (x) = f([f([f(x), x]), [f(x), x]]), f([f(x), x]), [f(x), x] (5.17)

Figure 5.24 shows a block diagram of a DenseNet.
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Figure 5.15 Convolution layer with one filter.

Figure 5.16 Convolution layer with four filters.

SENet

Squeeze and excitation networks, or SENet (Hu et al., 2018), take into account

the relationships between channels by weighting the channels of layers.
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Figure 5.17 Convolution layer with f filters.

Figure 5.18 Max pooling.

MobileNets
MobileNets (Howard et al., 2017) are CNNs with a lightweight backbone and high

performance geared toward mobile phones. MobileNet improvements include sep-

arable convolution filters, bottleneck blocks, and inverted residual blocks. Shuf-

fleNets (Zhang, Zhou, Lin and Sun, 2018) optimize the CNN architecture for

computation and memory access and allow for parallel computation (Ma et al.,

2018).

ODENet
ODENet (Chen, Rubanova, Bettencourt and Duvenaud, 2018) introduce a con-

tinuous formulation for CNNs equivalent to any number of layers.
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Figure 5.19 Convolution layer with one-dimensional filters.

Invertible Networks
Invertible residual neural networks (Behrmann et al., 2019) use the same net-

work for both analysis and synthesis. An invertible ResNet is used for both

classification and generation in the inverse direction.

Space–Time CNNs
Convolutional neural networks may be extended from input images to video by

processing multiple video frames simultaneously, as shown in Figure 5.25.

5.6 Applications

Convolutional neural networks have broad applications in computer vision and

beyond. Such a wide range of applications means that any architectural advance

impacts multiple application domains. The applications in computer vision in-

clude classification, recognition, localization, counting, object detection, segmen-

tation, image completion, and pose estimation. Beyond computer vision, CNNs

are used to efficiently represent data that may be represented as an array or

volume.

For example, in game playing, AlphaZero (Silver et al., 2017) uses a ResNet

as the representation of the board, pieces, and their possible moves. A policy

π(a|s), which is the probability of any action a taking place given any board

state s is represented by an 8× 8 × 73 volume, as shown in Figure 5.26. There
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Figure 5.20 Convolutional neural network. Input is a 28× 28 grayscale image, and the
output is 1 of 10 classes, such as the digits 0–9. The first convolutional layer consists
of 32 filters, such as 5× 5 filters applied to the image with padding, which yields a
28× 28 times32 volume. Next, a non-linear function, such as the ReLU, is applied
pointwise to each element in the volume. This is followed by a 2 × 2 max pooling
operation, which reduces dimensionality to half in each spatial dimension, to
14× 14× 32. The second convolutional layer increases dimensionality to 14× 14× 64
by applying a second set of 64 filters, such as 3× 3 filters, and the second pooling layer
reduces dimensionality, again to half in each dimension, to 7× 7× 64. The resulting
volume is then flattened to form a 3, 136 dimensional vector which is fed into two fully
connected layers. The first fully connected layer consists of 1, 024 activations, followed
by a second fully connected layer with 10 activations, one for each output class.

are 8× 8 board positions from which to pick up a piece. Figure 5.27 shows that

in chess, there are 56 queen moves in 8 possible directions times seven maximum

steps, eight knight moves marked by blue squares, and nine under promotions,

for a total of 73 possibilities.
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Figure 5.21 Convolutional neural network activations.

Figure 5.22 Residual neural network (ResNet) activations with skip connections
between layers.

Figure 5.23 Residual neural network (ResNet).
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Figure 5.24 Dense neural network (DenseNet).

Figure 5.25 Space–time CNN.

5.7 Summary

In summary, CNNs are a type of neural network designed to recognize patterns

in images. The network comprises a series of layers, with each layer performing a

specific function. The first layer is typically a convolutional layer, which performs
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Figure 5.26 AlphaZero board and move representation.

Figure 5.27 AlphaZero chess move representation.

a convolution operation on the input image. The convolution operation is a

mathematical operation that extracts information from the input image. The

output of the convolutional layer is then passed to a pooling layer, which reduces

the number of neurons in the network. Multiple convolutions and pooling layers

are followed by a series of fully connected layers responsible for the classification

or other applications performed on the image. Convolutional neural networks

perform well in practice across a broad range of applications since they share

weights at multiple scales across space.
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6.1 Introduction

Time series may be used for representing any temporal sequence, such as a sen-

tence of words, video of image frames, or audio spectrogram. There are many

questions we can answer about sequences using deep learning. Applications us-

ing sequence models include machine translation, protein structure prediction,

DNA sequence analysis, speech recognition, music synthesis, image captioning,

sentiment classification, video action recognition, handwriting recognition, self-

driving cars, and many other applications involving time series. In a similar

fashion that representations for images share weights across space, many deep

learning representations for sequences share weights across time.

6.2 Natural Language Models

Language models are among the most common sequence models and therefore

we begin with their description. Representing language requires a natural lan-

guage model which may be a probability distribution over strings. We begin the

presentation of language models, starting from the simplest model and increas-

ing model complexity to reach recurrent neural networks (RNNs), which model

long-term dependencies.

6.2.1 Bag of Words

Perhaps the simplest model of language is a multi-set, also known as a bag of

words. In a bag of words we count how prevalent each term x is in a single docu-

ment d, which is the term frequency TF (x, d). Words are commonly normalized

to lowercase and stemmed by removing their suffixes; common stopwords (such

as a, an, the, etc.) are removed. The inverse document frequency may be used

to boost terms that are rare in an entire corpus of documents. The inverse docu-

ment frequency of a word appearing in a document and of a word not appearing

in a document measure together the entropy of the word:

IDF (x) = 1 + log

(

total number of documents

number of documents containing x

)

(6.1)
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The product of the term frequency and the inverse document frequency may

be used to form a vector TFIDF (x, d) = TF (x, d) × IDF (x) and used for

measuring similarity between a query and a document. TFIDF can be used as

weighting in search and data mining. A bag of words representation does not

preserve order information. For example, representing the sentence “Alice sent

a message to Bob” as a bag of words does not distinguish between the sender

and receiver of the message, and has an equivalent representation as the sentence

“Bob sent a message to Alice.”

6.2.2 Feature Vector

In contrast to a bag of words, using a feature vector to represent a sentence

preserves order information. A limitation of a feature vector representation is

that it requires learning each word order separately, even if two sentences are

equivalent, such as the sentences “Alice sent a message on Sunday” and “On

Sunday Alice sent a message,” which may be inefficient.

6.2.3 N-grams

A sequence of n adjacent words is called an n-gram. A bag of words is the

1-gram or unigram model in which p(x1, . . . , xn) ≈ ∏

p(xi). A Markov model

is a 2-gram or bi-gram model in which p(xn|x1, . . . , xn−1) ≈ p(xn|xn−1). The

probability of a word given the previous word may be computed by counting

p(xn|xn−1) = count(xn−1xn)
count(xn−1)

. Usually 3-,4-,5- or k-gram models are computed

p(xn|x1, . . . , xn−1) ≈ p(xn|xn−1, . . . , xn−k+1) and stored, given a large corpus.

6.2.4 Markov Model

The special case of a bi-gram is a Markov model given by p(xn|xn−1, . . . , x1) ≈
p(xn|xn−1) and does not model long-term dependencies. For example, in the sen-

tence “Alice and Bob communicate. Alice sent Bob a message,” the probability

of the last word “message,” given a Markov model, depends only on the previous

word “a,” which does not provide much information, rather than taking into

account the relevant prefix that “Alice and Bob communicate.” A limitation of

a Markov model is that it does not model long-term dependencies.

6.2.5 State Machine

A state machine is defined by a set of possible states S, a set of possible inputs

X , a transition function f : S ×X �→ S that maps from state and input to state,

a set of possible outputs Y, a mapping g : S �→ Y from states to outputs, and

an initial state s0. An example of a state machine is shown in Figure 6.1.
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Figure 6.1 State machine example. Possible states are S = {standing,moving}, a set of
possible inputs are X = {slow, fast}, transition function f : S × X �→ S denoted by
arrows, mapping g that in this example is the identity, and an initial state
s0 = standing.

Starting from the initial state s0 we iteratively compute:

st = f(st−1, xt)

yt = g(st)
(6.2)

for time steps t ≥ 1. For a sequence of inputs xt the outputs yt are of the form:

yt = g(f(. . . (f(f(s0, x1), x2), . . .), xt)) (6.3)

Recurrent neural networks are state machines with specific definitions of tran-

sition function f and mapping g, in which the states, inputs and outputs are

vectors.

6.2.6 Recurrent Neural Network

Recurrent neural networks both maintain word order and model long-term de-

pendencies by sharing parameters across time. They allow for the example inputs

and the label outputs to be of different lengths. Bidirectional RNNs model both

forward and backward sequence dependencies, and deep RNNs use multiple hid-

den layers. The limitation of plain RNNs is that they are difficult to train since

the error signals flowing back in time explode or vanish. Therefore, the hidden

units are replaced by simple gates that are easily trained.

6.3 Recurrent Neural Network

An RNN processes input sequences x1, . . . , xt via hidden units h0, h1, . . . , ht to

form outputs y1, . . . , yt by sharing parameter matrices U,W, V across time:

ht = f(ht−1, xt) = g(Wht−1 + Uxt)

yt = V ht

(6.4)

as shown in Figure 6.2, where the matrices U,W, V are shared across all time

steps t. Each component of the sequence, xt, ht, yt is a vector. The matrices U are

applied to the input units xt and the transformed input Ux serves as input to the
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Figure 6.2 Recurrent neural network (RNN): forward propagation, sharing weights
across time.

hidden unit ht. The matrices W are applied to the recurrent hidden units ht−1

and the transformed hidden unit Wht−1 serves as an input to the next hidden

unit ht. The matrices V are applied to the hidden units ht and the transformed

hidden unit V ht serves as an input to the predicted output yt. The function

g is a non-linear pointwise operation such as the tanh activation function. The

matrices W and U may be concatenated to form a matrix [W ;U ] and the hidden

units ht−1 and input units xt may be concatenated to form a single column

vector [ht−1;xt]
T , resulting in a single matrix–vector multiplication followed by

the non-linear function g for updating the hidden state ht.

6.3.1 Architectures

Recurrent neural networks map input sequences to output sequences of varying

lengths. This mapping may be a one-to-many, many-to-one, or a many-to-many

mapping. A one-to-many mapping from x1 to y1, . . . , yt is shown in Figure 6.3.

An example of such a mapping applied to image captioning is receiving the

representation of an image by a convolutional neural network (CNN) as an input

vector x1 for generating a sequence of words as output y1, . . . , yt, describing the

image.

A many-to-one mapping from x1, . . . , xt to yt is shown in Figure 6.4. An ex-

ample of such a mapping applied to sentiment classification is taking a sequence

of word representations x1, . . . , xt as input for computing a number yt which

denotes the sentiment of the input sentence. This can be applied to a book or to

restaurant reviews, where the input is the review in words, each word represented

by an embedding as described in Section 6.8, and the output is the number of

stars in the rating.

A many-to-many mapping from x1, . . . , xt to y1, . . . , yt is shown in Figure 6.5.

An example of such a mapping applied to video action classification maps a

sequence, which is the representations of video frames given by a CNN, to a

sequence of classes, which is used for classifying the action in the video. A many-

to-many model can also be used for named entity recognition, for example by
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Figure 6.3 Recurrent neural network with a one-to-many mapping, which may be used
in image captioning.

Figure 6.4 Recurrent neural network with a many-to-one mapping, which may be used
in sentiment classification.

denoting the output corresponding to named entities as 1 and 0 otherwise, and

learning the many-to-many mapping given multiple labeled sentences.

A many-to-many mapping can also be used in an encoder–decoder architec-

ture, as shown in Figure 6.6 and described in Section 6.6. Mapping between

sequences of words may be used in machine translation, in which the input se-

quence that is a sentence in one language is encoded and then decoded to an

output sentence in another language.

6.3.2 Loss Function

To complete our definition of the RNN architecture requires incorporating a loss

function, so that we can train our models, as shown in Figure 6.7.

The loss is a function of the predicted outputs ot, and ground-truth labels

yt, as shown in Figure 6.8, and may be the cross-entropy loss. Using a softmax

activation function we define the total loss between the softmax of the predicted

values ŷt = softmax(ot), and ground-truth labels yt as the sum of losses in indi-

vidual time steps L =
∑

t Lt. Specifically, we defined the hidden units, outputs,
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Figure 6.5 Recurrent neural network with a many-to-many mapping, which may be
used in action recognition and named entity recognition.

Figure 6.6 Recurrent neural network with a many-to-many mapping using an
encoder–decoder architecture which may be used in machine translation.

predictions, and ground-truth value for each time step t by:

ht = g(Wht−1 + Uxt)

ot = V ht

ŷt = softmax(ot)

yt = ground-truth label

(6.5)

Given input sequences xi and predicted sequences ŷi for i = 1, . . . ,m, each

pair of inputs and predicted outputs of length li, and ground-truth outputs yi,

define a loss of a single sequence as the sum of element losses where each element

may be a character or word:

Lsequence(ŷ
i, yi) =

li
∑

t=1

Lelement(ŷ
i
t, y

i
t) (6.6)

and the total loss over all sequences as the sum of sequence losses:

Ltotal(ŷ, y) =
m
∑

i=1

Lsequences(ŷ
i, yi) (6.7)
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Figure 6.7 Recurrent neural network total loss.

Figure 6.8 Recurrent neural network individual losses.

where ŷi = Fθ(x
i) is the prediction of the RNN for input xi with network

parameters θ.

6.3.3 Deep RNN

Stacking multiple hidden layers and connecting them:

hl
t = g(W lhl

t−1 + U lhl−1
t ) (6.8)

for layers l = 1, . . . , L, results in a deep RNN, as shown in Figure 6.9. Matrices

W l, U l for each layer l are shared across all time steps t.
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Figure 6.9 Deep recurrent neural network.

6.3.4 Bidirectional RNN

Often the output depends both on past and future values of the sequence. For

example, in speech and handwriting recognition a word or character may de-

pend both on previous and following words or characters. We therefore define a

bidirectional RNN by:

ht = g(Wht−1 + Uxt)

h̄t = g(W̄ h̄t+1 + Uxt)

ot = V [ht; h̄t]
T

(6.9)

where the hidden units ht move forward in time using the shared matrix W , and

the hidden units h̄t move backward in time from using the shared matrix W̄ , as

shown in Figure 6.10. The inputs xt are fed into both the forward hidden units

ht and backward hidden units h̄t, and in turn both the forward and backward

hidden units are fed into the output ot.

Stacking multiple bidirectional hidden layers results in a deep bidirectional

RNN, as shown in Figure 6.11.
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Figure 6.10 Bidirectional recurrent neural network.

6.3.5 Backpropagation Through Time

Having defined the RNN architectures and loss function, our goal is to train

the RNN. Neural networks are trained using the backpropagation algorithm,

and RNNs are trained using backpropagation through time. Given a non-linear

activation function g such as the tanh activation function, and softmax loss, the

loss for element or time step j may be defined as Lelement(yj , ŷj) = −yj log ŷj
and the total loss of the sequence:

Lsequence(y, ŷ) =
l
∑

j=1

Lelement(yj , ŷj) = −
l
∑

j=1

yj log ŷj (6.10)

as illustrated in Figure 6.12.

Expressing the gradient of a sequence loss Lsequence(ŷ, y) with respect to all

RNN weights θ by the sum of gradients of element losses and then using the

chain rule results in:

dLsequence(ŷ, y)

dθ
=

l
∑

j=1

dLelement(ŷj , yj)

dθ
=

l
∑

j=1

l
∑

t=1

∂Lelement(ŷj , yj)

∂ht

∂ht

∂θ
(6.11)

Taking the derivatives of the loss for time t with respect to the matrix V only

depends on time t. For example:

∂L3

∂V
=

∂L3

∂ŷ3

∂ŷ3
∂V

=
∂L3

∂ŷ3

∂ŷ3
∂z3

∂z3
∂V

(6.12)

where z3 = V h3. However, the derivative for time step t with respect to W also
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Figure 6.11 Deep bidirectional recurrent neural network.

Figure 6.12 Recurrent neural network losses.

depends on the previous time step t − 1, which in turn depends on t − 2; for

example:

∂L3

∂W
=

∂L3

∂ŷ3

∂ŷ3
∂h3

∂h3

∂W
=

3
∑

i=1

∂L3

∂ŷ3

∂ŷ3
∂h3

∂h3

∂hi

∂hi

∂W
(6.13)
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Figure 6.13 Recurrent neural network: backpropagation through time.

where h3 = tanh(Wh2 + Ux3), as shown in Figure 6.13. Since:

∂h3

∂h1
=

∂h3

∂h2

∂h2

∂h1
(6.14)

we get:

∂L3

∂W
=

3
∑

i=1

∂L3

∂ŷ3

∂ŷ3
∂h3

⎛

⎝

3
∏

j=i+1

∂hj

∂hj−1

⎞

⎠

∂hi

∂W
(6.15)

where the product in parentheses in Equation 6.15 equals
∏

WTdiag(tanh′(ht−1)).

Thus, backpropagation through time involves raising the matrix WT to a high

power. Therefore, if the eigenvalues are less than 1 the corresponding terms will

vanish, whereas if they are greater than 1 they will explode. While exploding

gradients may be handled by clipping, vanishing gradients make plain RNNs

difficult to train.

Backpropagation through time is described in pseudocode in Algorithm 6.1.

Notice that the last line of the backpropagation loop involves a matrix multi-

plication with WT , which means that performing the loop results in taking the

kth power of the matrix, which is equivalent to the analytic derivation. Thus,

backpropagation in time will result in the eigenvalue of the matrix being either

less than 1, in which case the gradient will vanish, or more than 1, in which case

the gradients will explode.

Algorithm 6.1 RNN backward propagation through time.

for t = k, . . . , 1 do:

dot = e′(ot)
dL(zt;yt)

dzt

dV = dV + doth
T
t

dht = dht + V T dot
dzt = g′(zt)dht

dU = dU + dztx
T
t

dW = dW + dzth
T
t−1

dht−1 = WT dzt
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Figure 6.14 Recurrent neural network: hidden unit.

Figure 6.15 Gated recurrent unit inputs and output.

In summary, RNNs allow us to process variable-length sequences and model

long-term dependencies by sharing parameters across time. Each hidden state

depends on the corresponding input and current state, as shown in Figure 6.14.

An input may alter the network at a later time step. The main limitation of

plain RNNs is that training is difficult and results in vanishing and exploding

gradients. The solution is to model the hidden units using gates, which are easy

to train, such as the long short-term memory (LSTM) (Hochreiter and Schmid-

huber, 1997) and gated recurrent unit (GRU) (Cho et al., 2014), as described

next.

6.4 Gated Recurrent Unit

The GRU (Cho et al., 2014) is simple and easy to train. It has the same inputs

and outputs as the RNN. At each time step t the GRU receives as input the

current state xt and the hidden state ht−1 of the previous time step, and outputs

the hidden state ht at time t, as shown in Figure 6.15.

Gated recurrent units are placed one after the other, sequentially, where the

hidden state output ht of one unit serves as the hidden state input of the following

unit, as shown in Figure 6.16. In a similar fashion to the RNN, the weights from

the current states and from the hidden states are shared across time.

The GRU consists of an update gate zt, a reset gate rt and a candidate h̃t, as

shown in Figure 6.17.
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Figure 6.16 Gated recurrent units used sequentially with the outputs of one unit
serving as the input to the next.

Figure 6.17 Gated recurrent unit.

The GRU gates are defined by:

zt = σ(Wzht−1 + Uzxt) update gate

rt = σ(Wrht−1 + Urxt) reset gate

h̃t = φ(W (rt ⊙ ht−1) + Uxt) candidate

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t output

(6.16)

As an analogy, consider the input xt to be the weather today, the hidden unit

ht−1 to be the clothes we wore yesterday, h̃t to be the candidate clothes we

prepared to wear today and ht to be the actual clothes we wear today. Usually,

we wear clothes based on the weather, based on what we wore yesterday, and

based on our mood or what we prepared to wear today. The update and reset

gates determine to what extent we take into account these factors: Do we ignore
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Figure 6.18 Gated recurrent unit update gate used for interpolation. The current
hidden state ht is a linear interpolation of the previous hidden state ht−1 and the new
candidate h̃t based on the value of zt, ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t.

Figure 6.19 Gated recurrent unit update gate zt = σ(Wzht−1 + Uzxt).

the weather xt completely? Do we forget what we wore yesterday ht−1? And do

we take into account our candidate clothes we prepared h̃t, and to what extent?

6.4.1 Update Gate

The activation ht at time t is a linear interpolation between the previous acti-

vation ht−1 and the current candidate h̃t, which is controlled by an update gate

zt:

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t (6.17)

as shown in Figure 6.18.

The update gate zt is a non-linear function, a sigmoid, of a combination of the

current state xt and the previous hidden state ht−1:

zt = σ(Wzht−1 + Uzxt) (6.18)

as shown in Figure 6.19.

If the update gate is set to zt = 0, then the output is the new candidate, as

shown in Figure 6.20.
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Figure 6.20 Gated recurrent unit with update gate set to zt = 0. The current hidden
state ht is the new candidate h̃t, ht = h̃t = φ(W (rt ⊙ ht−1) + Uxt).

If the update gate is set to zt = 1, then the output is the previous hidden

state, ignoring both the candidate and current state altogether, as shown in

Figure 6.21.

6.4.2 Candidate Activation

The candidate activation h̃t is a non-linear function, a φ = tanh, of a combination

of the current state xt and the previous hidden state ht−1 modulated by the reset

gate rt:

h̃t = φ(W (rt ⊙ ht−1) + Uxt) (6.19)

as shown in Figure 6.22.

6.4.3 Reset Gate

The reset gate rt is a non-linear function, a sigmoid, of a combination of the

current state xt and the previous hidden state ht−1:

rt = σ(Wrht−1 + Urxt) (6.20)

as shown in Figure 6.23.
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Figure 6.21 Gated recurrent unit with update gate set to zt = 1. The current hidden
state ht equals the previous hidden state ht−1, ht = ht−1, ignoring both the current
state xt and the new candidate h̃t.

Figure 6.22 Gated recurrent unit candidate activation is a non-linear function of a
combination of the current state xt and previous hidden state ht−1 modulated by the
reset gate rt, h̃t = φ(W (rt ⊙ ht−1) + Uxt).

If the reset gate is set to rt = 0 then the candidate h̃t is a function of the

current state xt such that h̃t = φ(Uxt), forgetting the previous hidden state

ht−1, as shown in Figure 6.24.

If the reset gate is set to rt = 1 then the candidate is a function of the previous

hidden state ht−1, ignoring the current state x , as shown in Figure 6.25.
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Figure 6.23 Gated recurrent unit reset gate rt = σ(Wrht−1 + Urxt).

Figure 6.24 Gated recurrent unit with reset gate set to rt = 0. The candidate is a
function of the current state h̃t = φ(Uxt).

6.4.4 Function

If zt = 0 and rt = 0 then the output hidden state is only dependent on the

current state φ(Uxt), forgetting the previous hidden state ht−1, as shown in

Figure 6.26.

If zt = 0 and rt = 1, as shown in Figure 6.27, then the GRU is reduced to an

RNN, as shown in Figure 6.28.

The GRU avoids the RNN problem of vanishing or exploding gradients by an

addition before the output, as highlighted in Figure 6.29, which interrupts the

repeated multiplication during backpropagation through time.
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Figure 6.25 Gated recurrent unit with reset gate set to 1, rt = 1. The candidate h̃t is a
function of the previous hidden state ht−1 ignoring the current state xt such that
h̃t = φ(Wht−1 + Uxt).

6.5 Long Short-Term Memory

The long short-term memory (Hochreiter and Schmidhuber, 1997) was intro-

duced two decades before the GRU (Cho et al., 2014). The LSTM is easy to

train, and includes an additional input and output compared with the RNN and

GRU. At each time step t the LSTM receives as input the current state xt, the

hidden state ht−1, and memory cell ct−1 of the previous time step, and outputs

the hidden state ht and memory cell ct at time t, as shown in Figure 6.30. The

memory cells propagate information from the previous state to the next, whereas

the hidden states determine the way in which that information is propagated.

The LSTM units are placed one after the other, sequentially, where the hidden

state ht and memory cell ct outputs of one unit serve as the hidden state and

memory cell inputs of the following unit, as shown in Figure 6.31. In a similar

fashion to the RNN and GRU, the weights from the current states and from the

hidden states, as well as the weights from the memory cells, are shared across

time.

The LSTM consists of a forget gate ft, an input gate it, an output gate ot,

and a candidate memory c̃t, as shown in Figure 6.32.
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Figure 6.26 Gated recurrent unit with update gate set to zt = 0, and reset gate set to
rt = 0. The output hidden state ht does not take into account the previous hidden
state ht−1, such that ht = h̃t = φ(Uxt).

The LSTM gates are defined by:

ft = σ(Wfht−1 + Ufxt) forget gate

it = σ(Wiht−1 + Uixt) input gate

ot = σ(Woht−1 + Uoxt) output gate

c̃t = φ(Wht−1 + Uxt) candidate memory

ct = ftct−1 + itc̃t memory cell

ht = otφ(ct) output gated memory

(6.21)

6.5.1 Forget Gate

The forget gate ft is a non-linear function, a sigmoid, of a combination of the

current state xt and the previous hidden state ht−1:

ft = σ(Wfht−1 + Ufxt) (6.22)

as shown in Figure 6.33.

If ft = 0 then the previous memory cell ct−1 is ignored, as shown in Figure

6.34.
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Figure 6.27 Gated recurrent unit with update gate set to zt = 0, and reset gate set to
rt = 1. The GRU is reduced to an RNN such that ht = h̃t = φ(Wht−1 + Uxt).

Figure 6.28 Gated recurrent unit reduced to an RNN when the update gate is set to
zt = 0 and the reset gate is set to rt = 1, such that ht = φ(Wht−1 + Uxt).

6.5.2 Input Gate

The input gate it is a non-linear function, a sigmoid, of a combination of the

current state xt and the previous hidden state ht−1:

it = σ(Wiht−1 + Uixt) (6.23)

shown in Figure 6.35.

If it = 0 then the new candidate memory c̃t is ignored, as shown in Figure

6.36.
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Figure 6.29 Gated recurrent unit addition before output, as highlighted, avoids the
vanishing or exploding gradient problem during training, interrupting the repeated
multiplication during backpropagation through time.

Figure 6.30 The LSTM inputs and outputs.

Figure 6.31 The LSTM units used sequentially, with the outputs of one unit serving as
inputs to the next.
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Figure 6.32 Long short-term memory.

Figure 6.33 The LSTM forget gate ft = σ(Wfht−1 + Ufxt).

6.5.3 Memory Cell

The memory ct is updated by partially forgetting the previous memory ct−1 and

adding the new candidate memory c̃t:

ct = ftct−1 + iic̃t (6.24)

as shown in Figure 6.37.
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Figure 6.34 The LSTM forget gate set to ft = 0, ignoring previous memory cell ct−1.

Figure 6.35 The LSTM input gate it = σ(Wiht−1 + Uixt).

6.5.4 Candidate Memory

The new candidate memory c̃t is a non-linear function, a sigmoid, of a combina-

tion of the current state xt and the previous hidden state ht−1:

c̃t = σ(Wht−1 + Uxt) (6.25)

as shown in Figure 6.38.

6.5.5 Output Gate

The output gate ot is a non-linear function, a sigmoid, of a combination of the

current state xt and the previous hidden state ht−1:

ot = σ(Woht− + U x ) (6.26)
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Figure 6.36 The LSTM input gate set to it = 0, ignoring new candidate memory c̃t.

Figure 6.37 The LSTM interpolation of previous memory ct−1 and new candidate
memory c̃t by forget gate ft and input gate it, such that ct = ftct−1 + iic̃t.

as shown in Figure 6.39. The hidden state at time t is a pointwise multiplication

of the output ot and a non-linear function, a tanh of new memory cell ct:

ht = otφ(ct) (6.27)
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Figure 6.38 The LSTM candidate memory c̃t is a function of the previous hidden state
ht−1 and the current state xt, such that c̃t = σ(Wht−1 + Uxt).

Figure 6.39 The LSTM output gate c̃t = σ(Wht−1 + Uxt).

6.5.6 Peephole Connections

Notice that the LSTM unit performs a read after write, as shown in Figure 6.40.

This is avoided by adding peephole connections from the previous memory cell

ct−1 or ct:

ft = σ(Wfht−1 + Pfct−1 + Ufxt) forget gate

it = σ(Wiht−1 + Pict−1 + Uixt) input gate

ot = σ(Woht−1 + Poct + Uoxt) output gate

(6.28)

as shown in Figure 6.41.

6.5.7 GRU vs. LSTM

Comparing the addition before the new hidden state ht in the GRU as highlighted

in Figure 6.29 with the addition before the new memory cell ct in the LSTM as

highlighted in Figure 6.42, both units avoid repeated multiplications that cause

vanishing or exploding gradients by a similarly positioned addition.

Comparing the interpolation of the new candidate in the GRU as highlighted

in Figure 6.43 with the interpolation of the new memory cell in the LSTM as

highlighted in Figure 6.44 shows that the update gate z controls the amount
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Figure 6.40 The LSTM read after writing.

Figure 6.41 The LSTM with peepholes.
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Figure 6.42 The LSTM addition, as highlighted, avoiding repeated multiplication,
which causes vanishing or exploding gradients.

of the new candidate to pass in the GRU, whereas the input gate controls the

amount of the new candidate memory to pass in the LSTM. Interpolation in the

GRU is controlled by a single parameter zt, whereas in the LSTM interpolation

is controlled by two separate parameters it and ft.

Comparing the GRU reset gate controlling the candidate hidden state, as

highlighted in Figure 6.45, with the LSTM input gate controlling the candidate

memory cell, as highlighted in Figure 6.46, shows the modulation of the candidate

in both units.

Finally, an empirical evaluation of 10,000 architectures (Jozefowicz et al., 2015)

for these units demonstrates that the best results are obtained by similar GRU

variants. In summary, perhaps the exact gate configuration is less important

than its overall structure and function.

6.6 Sequence to Sequence

Building a language model involves a distribution over words in the language.

In applications such as machine translation, question answering, story synthesis,

and protein structure prediction, it is important to generate entire sequences. In

these applications the long-term dependencies between words in the vocabulary,

sentences and even paragraphs are important. Sequence-to-sequence (seq2seq)

models (Sutskever et al., 2014) consider entire sequences, or sentences, as inputs

and outputs. Seq2seq models consist of an encoder and a decoder. The encoder is
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Figure 6.43 Gated recurrent unit candidate interpolation by zt ⊙ h̃t.

a GRU or LSTM, which may be bidirectional and deep, which encodes the input

sequence (x1, . . . , xs) into a context vector as output z = encoder(x1, . . . , xs).

The decoder is also a GRU or LSTM that receives the context vector z as input,

as the first hidden state vector, and generates an output sequence (y1, . . . , yt) =

decoder(z). The encoder and decoder models are trained end-to-end such that:

(y1, . . . , yt) = decoder(encoder(x1, . . . , xs)) (6.29)

6.7 Attention

When humans translate or write sentences and paragraphs we do not store a

representation of the entire sentence or paragraph before we begin its translation.

When writing sentences and paragraphs we edit different parts of the sentence,

going back to other parts. These processes are not only sequential and back-

to-back as in the encoder–decoder architecture described earlier. A simple form

of attention is applied to regression. Given samples xi, yi of a function, we can

estimate the value y = f(x) by weighting each yi as a function of α(x, xi), which

decreases the farther apart x and xi are. For example, we can estimate:

y = f(x) =
∑

i

α(x, xi)yi (6.30)
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Figure 6.44 The LSTM candidate memory interpolation by it ⊙ c̃t.

Figure 6.45 Gated recurrent unit reset rt and candidate hidden state h̃t.

where in attention x is called the query, xi is called a key, and yi is a value. A

specific choice is using kernel k as a local weighting function:

α(x, xi) =
k(x, xi)

∑

j k(x, x )
yi (6.31)
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Figure 6.46 The LSTM input it and candidate memory c̃t.

also known as the Nadaraya–Watson estimator (Nadaraya, 1964; Watson, 1964).

More recently, seq2seq models have been improved by models of attention. Seq2seq

models incorporating attention have different parts of the output sequence pay

attention to different parts of the input sequence (Bahdanau et al., 2015; Luong

et al., 2015). Instead of having the decoder receive as input the encoder’s out-

put in a sequential process, the decoder takes into account the entire encoding

sequence, as shown in Figure 6.47. The input to the decoder hidden units are

context vectors ci for each time step i computed as:

ci =
∑

j

αi,j [hj ; h̄j ]
T (6.32)

for a bidirectional LSTM. The weights αi,j sum to 1,
∑

j αi,j = 1, and are the

amount of attention the output word oi gives the input word xj :

αi,j =
exp(si,j)

∑

k exp(si,j)
(6.33)

where si,j is a function of the encoder hidden units [ht; h̄t]
T and decoder hidden

units h̃t−1. The decoder hidden units h̃t are a function of the context vectors ct
and output at the previous time step ot−1. This form of attention is also known

as encoder–decoder attention. Self-attention (Lin, Feng, Santos, Yu, Xiang, Zhou

and Bengio, 2017) improves upon the encoding process by having each word in a

sequence, in the encoder, consider the effect of all other words in the sequence. A

self-attention matrix is then used to represent the embedding, where each entry

i, j corresponds to the self-attention of word i to j in the same sequence.
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Figure 6.47 Machine translation with attention.

6.8 Embeddings

The representation of the input to our sequence model is an important decision,

and for language we would like a meaningful representation for words. If we sim-

ply represent words in a language by one-hot encoding xi = (0, . . . , 0, 1, 0, . . . , 0)T

then there will be no meaning to the relationship between words, since in this

simple representation two words xi and xj are either the same when their dot

product is 1, xT
i xj = 1, or different when their dot product is 0, xT

i xj = 0. For

example, using a one-hot representation of the words man, woman, king, queen

and ball, all words will either be the same or different based on their dot product,

without modeling any relationship between the words. In contrast, in language

there are relationships and similarity between words such as synonyms and nega-

tions, as well as analogies. Therefore, we would like to use a representation of

words that allows us to model their relationships, by learning a word embedding

trained using a neural network (Bengio et al., 2003). Word embeddings can be

used to model analogies A : A′ :: B : B′, answering questions such as man is to

woman like king is to ?, for which the answer is queen. We would like similar

words to be close in a low-dimensional embedding space. Moreover, often we per-

form analysis using a limited training set in scope or breadth, whereas we would

like to use representations that allow for transfer learning from a very large cor-
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pus with a broad vocabulary. Transfer learning from a pre-trained model is useful

in many applications such as sentiment analysis, named entity recognition, text

summarization, and parsing.

Next, we define the notion of an embedding and its training. For words in

a vocabulary V represented by one-hot encoded |V | dimensional vectors w, we

learn an n × |V | dimensional embedding matrix E such that x = Ew is the n-

dimensional vector embedding of w. Using the embedding and cosine similarity

between embedded words, we can find analogies such as xman:xwoman::xking:? by:

argmax
x

= similarity(x, xking − xman + xwoman) (6.34)

using the cosine similarity of two word representations xi and xj defined as:

cosine similarity(xi, xj) =
xT
i xj

‖xi‖2‖xj‖2
(6.35)

to find x = xqueen. To learn the embedding E, we use a large unsupervised corpus

of sentences, which we turn into supervised training pairs by considering target

words and their surrounding contexts. The embedding will represent each word in

the corpus wi by its embedding xi = Ewi. The skip-gram model (Mikolov, Chen,

Corrado and Dean, 2013) randomly selects a context word wc, while ensuring

coverage of all words, and then randomly selects a target word wt in a window

around the context. Next, a neural network maps each context word wc to its

embedding xc = Ewc and maps the embedding to a fully connected output

layer o followed by a softmax mapping to the probabilities of all words in the

vocabulary to the target word wt:

p(wt|wc) =
eθ

T
c xc

∑|V |
j=1 e

θT
j
xc

(6.36)

The network is trained by minimizing the loss between the softmax probabili-

ties and the true targets, solving for the embedding matrix E weights and the

network parameters θ end-to-end by backpropagation. In practice, the efficiency

of training the skip-gram model is improved by using negative sampling and a

hierarchical softmax (Mikolov, Sutskever, Chen, Corrado and Dean, 2013). Fi-

nally, the embedding is used in the various tasks by computing the embedding

of individual words xt = Ewt, which serve as inputs to a sequence model.

Word embeddings have been extended to sentence embeddings (Kiros et al.,

2015) and paragraph embeddings (Le and Mikolov, 2014). Embedding from lan-

guage models (ELMo; (Peters et al., 2018)) represents word vectors as the hidden

states of deep bidirectional LSTMs pre-trained on a very large corpus.

6.9 Introduction to Transformers

Transformers, described in detail in Chapter 8, are based only on attention mech-

anisms (Vaswani et al., 2017) without using RNNs or CNNs. The transformer
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consists of a stack of encoders connected to a stack of decoders. The input to the

first encoder is a word embedding and a position embedding. Each encoder con-

sists of a self-attention layer and a neural network passing its output as input to

the next encoder in the stack of encoders. Each decoder contains a self-attention

layer, followed by an encoder–decoder attention layer, followed by a neural net-

work. Each decoder passes its output as input to the next decoder in the stack

of decoders. Using self-attention in the encoders and both encoder–decoder and

self-attention in the decoders results in state-of-the-art results in machine trans-

lation. The transformer architecture does not use RNNs nor CNNs, which results

in faster training time. A limitation of the Transformer architecture is that it

processes the entire sequence at once, which may be a very long sequence of

words. Recent Transformer models split a long sequence of words into segments

and add a recurrent layer between Transformers, allowing processing fixed-sized

inputs while modeling long-term relationships. The position of words is required

for computing the attention score. Therefore, the Transformer uses an absolute

position embedding, whereas the Transformer XL that breaks the sequence into

segments embeds the relative distance between words.

6.10 Summary

This chapter introduces RNNs and their extension to bidirectional and deep

RNNs. We present backpropagation through time, its limitations, and the so-

lutions in the form of LSTM and GRU. The chapter describes seq2seq models,

followed by encoder–decoder attention and self-attention. Finally, the chapter

presents word embeddings and their extension to sentences and paragraphs.

Convolutional neural networks share weights across space, while RNNs share

weights across time. Chapter 7 presents graph neural networks (GNNs), which

share weights across neighborhoods.
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7.1 Introduction

Graphs are the mathematical representation of networks. Networks describe in-

teractions between entities; for example, a social network of friends, bonds be-

tween atoms in a molecule or protein, the internet of web pages, the cellular

communication network between users, a financial transaction network between

bank clients, protein-to-protein interaction networks, or the neural networks be-

tween neurons in our brains. Specifically, the human brain consists of around 100

billion neurons (for comparison, the cat brain consists of around one billion neu-

rons) with 100 trillion connections between neurons. Each neuron is connected

to 5,000–200,000 other neurons, and there are around 10,000 different types of

neurons. Perhaps most importantly, around 1,000 neurons are generated each

day of our lives. Modeling such networks requires a dynamic graph structure.

Each node in a network may have an associated feature vector, as shown in

Figure 7.1. For example, in a graph representing a molecule or protein, the nodes

are the atoms, the bonds between atoms are the edges, and each node has an

associated feature vector of atom properties. In a social network, each node may

represent a user. The edges are connections between users. Each node may have

a feature vector, including the user’s age, gender, status, country, occupation,

interests, likes, etc.

Network data is often messy or incomplete, and therefore we would like to be

Figure 7.1 A graph with nodes. Each node i ∈ V is associated with a feature vector
vi ∈ Rn.
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Figure 7.2 Graph node classification. The goal is to classify the uncolored nodes to
one of two classes, green or blue.

able to perform operations on graphs, such as completing missing information

in the graph. Common tasks on networks include node classification for pre-

dicting the type of nodes, as shown in Figure 7.2, link prediction for predicting

whether two nodes are connected, finding clusters for detecting communities,

and measuring the similarity between nodes for embedding node features into

a low-dimensional space. Specifically, we will use deep learning for performing

three key operations on graphs:

1. Node prediction: predicting a property of a graph node.

2. Link prediction: predicting a property of a graph edge. For example, in a

social network, we can predict whether two people will become friends.

3. Graph or sub-graph prediction: predicting a property of the entire graph

or a sub-graph. For example, given a graph representation of a protein, we

can predict its function as an enzyme or not. Given a molecule represented

as a graph, we can predict whether it will bind to a given receptor.

Notice that if we only have node information and the task is edge prediction, we

may pool the information from the graph nodes. Similarly, if we only have edge

information and the task is node prediction, we may pool information from the

graph edges.

A fundamental property common to neural network representations that work

well is that they all share weights. Chapter 5 on convolutional neural networks

(CNNs) describes neural networks applied to images of fixed size and regular

grids, sharing weights across space, as shown on the left of Figure 7.3, by using

a CNN or ResNet or ODENet. Chapter 6, on sequence models, describes neural

networks applied to sequences, sharing weights across time, as shown in the

center of Figure 7.3, by using a recurrent neural network (RNN), long short-term

memory (LSTM), or gated recurrent unit (GRU). In this chapter, we describe

graph neural networks (GNNs), applied to networks or general graphs sharing

weights across neighborhoods, as shown in the right of Figure 7.3. A key insight

in GNNs is that, similarly to CNNs or RNNs, nodes in the graph may aggregate

information from neighboring nodes.
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Figure 7.3 Neural network representations sharing weights. A CNN shares weights
across space (left); an RNN shares weights across time (center); and a GNN shares
weights across neighborhoods (right).

7.2 Definitions

We begin with basic graph definitions. A graph G = (V, E) contains a set of n

vertices (or nodes) V and a set of m edges E between vertices. The edges of the

graph can either be undirected or directed.

A common duality of modeling problems in computer science is using graph

theory by a graph representation or linear algebra by a matrix representation.

Moving back and forth between graph theory and linear algebra allows us to

apply algorithms from both.

Two basic graph representations are an adjacency matrix and adjacency list.

An adjacency matrix A of dimensions n× n is defined such that:

Ai,j =

{

1, if there is an edge between vertices i and j

0, otherwise
(7.1)

If the edges have weights then the 1s in the adjacency matrix are replaced with

edge weights wi,j . For an undirected graph the matrix A is symmetric.

The adjacency matrix of the example graph in Figure 7.4 with 9 nodes and 11

edges is the 9× 9 matrix:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 1 1 0 0 0 0 0

1 0 0 1 1 0 0 0 0

1 0 0 1 0 0 0 0 0

1 1 1 0 1 1 0 0 0

0 1 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 0 1 0 1 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.2)

where the number of 1s in matrix A is twice the number of edges in the graph.

Notice that different permutations of the node labels result in different ad-

jacency matrices. In contrast, an adjacency list of the edges in the graph is

invariant to node permutations. Storing an adjacency matrix takes O(n2) mem-
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Figure 7.4 Example graph with 9 nodes and 11 edges.

ory, where n is the number of nodes in the graph; storing an adjacency list takes

only O(m+ n), where m is the number of edges in the graph.

The degree of a node represents the number of edges incident to that node, and

the average degree of a graph is the average degree over all its nodes 1
n

∑n
i=1 di,

which equals 2m
n

for an undirected graph and m
n

for a directed graph. In a

complete undirected graph, there is an edge between every two vertices for a

total of n(n−1)
2 edges.

The degree matrix D of the adjacency matrix A is a diagonal matrix such

that:

Di,i = degree(vi) = di =
n
∑

j=1

Ai,j (7.3)

The neighbors of a node i ∈ V are its adjacent nodes N (i), and the degree of a

node is its number of neighbors di = |N (i)|. The degree matrix of the graph in

Figure 7.4 is the 9× 9 diagonal matrix:

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 5 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.4)

In a regular graph, each node has the same number of neighbors, which is the

degree of a node.

The graph Laplacian matrix L is the difference between the degree matrix and
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adjacency matrix L = D − A. The Laplacian matrix of the example graph in

Figure 7.4 is given by the matrix:

L = D −A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3 −1 −1 −1 0 0 0 0 0

−1 3 0 −1 −1 0 0 0 0

−1 0 2 −1 0 0 0 0 0

−1 −1 −1 5 −1 −1 0 0 0

0 −1 0 −1 2 0 0 0 0

0 0 0 −1 0 2 −1 0 0

0 0 0 0 0 −1 3 −1 −1

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 −1 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.5)

The adjacency matrix and the degree matrix are symmetric, and therefore,

the Laplacian matrix is symmetric. Normalizing the Laplacian matrix makes

diagonal elements equal 1 and scales off-diagonal entries. The graph symmetric

normalized Laplacian matrix is:

Lsym = D− 1
2LD− 1

2 = I −D− 1
2AD− 1

2 (7.6)

where D− 1
2 is a diagonal matrix with entries D

− 1
2

i,i = 1√
di

. Nodes without neigh-

bors are not normalized to avoid division by zero. The symmetric normalized

Laplacian matrix elements are given by:

Lsym
i,j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if i = j and di �= 0

− 1√
didj

, if i �= j and node i is adjacent to node j

0, otherwise

(7.7)

The symmetric normalized Laplacian matrix of the example graph in Figure 7.4

is given by the matrix:

Lsym =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 1
3 − 1√

6
− 1√

15
0 0 0 0 0

− 1
3 1 0 − 1√

15
− 1√

6
0 0 0 0

− 1√
6

0 1 − 1√
10

0 0 0 0 0

− 1√
15

− 1√
15

− 1√
10

1 − 1√
10

− 1√
10

0 0 0

0 − 1√
6

0 − 1√
10

1 0 0 0 0

0 0 0 − 1√
10

0 1 − 1√
6

0 0

0 0 0 0 0 − 1√
6

1 − 1√
3

− 1√
3

0 0 0 0 0 0 − 1√
3

1 0

0 0 0 0 0 0 − 1√
3

0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.8)

which is a symmetric matrix.

The random walk normalized Laplacian matrix is a transition matrix for a

random walk on a graph with non-negative weights and is defined as:

Lrw = D−1L = I −D−1A (7.9)
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where D−1 is a diagonal matrix with entries D−1
i,i = 1

di
. The random walk nor-

malized Laplacian matrix elements are given by:

Lrw
i,j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if i = j and di �= 0

− 1
di
, if i �= j and node i is adjacent to node j

0, otherwise

(7.10)

The random walk normalized Laplacian matrix of the example graph in Figure

7.4 is given by the matrix:

Lrw =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 1
3 − 1

3 − 1
3 0 0 0 0 0

− 1
3 1 0 − 1

3 − 1
3 0 0 0 0

− 1
2 0 1 − 1

2 0 0 0 0 0

− 1
5 − 1

5 − 1
5 1 − 1

5 − 1
5 0 0 0

0 − 1
2 0 − 1

2 1 0 0 0 0

0 0 0 − 1
2 0 1 − 1

2 0 0

0 0 0 0 0 − 1
3 1 − 1

3 − 1
3

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 −1 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.11)

which is not symmetric and each row sums to zero. The matrices Lrw and Lsym

are similar and therefore have the same eigenvalues.

A graph with n nodes has n eigenvectors with eigenvalues that are non-negative

since the Laplacian matrix L has non-negative eigenvalues. A sub-graph of a

graph is a subset of edges and all their nodes in the graph. If there is at least one

path between each pair of nodes in the sub-graph, it is a connected component.

The number of zero eigenvalues of the Laplacian matrix of a graph is the number

of its connected components.

A walk on a graph begins with a node i ∈ V and ends with a node j ∈ V and

traverses a sequence of edges and nodes between nodes i and j. If the nodes are

distinct, the walk is a path; if the edges are distinct, the walk is a trail. In the

matrix, Ak, which is the adjacency matrix to the power of k, each entry Ak
i,j is

the number of walks of length k in the graph between the node in row i and the

node in column j.

Graph nodes may consist of features x. For example, a binary feature x for

the graph shown in Figure 7.4 may be defined by appending a column to the
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Figure 7.5 Graph node embedding. A node i ∈ V with associated feature vector
vi ∈ Rn which is embedded into a low-dimensional space zi ∈ Rd by an embedding
f : vi �→ zi.

adjacency matrix:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A B C D E F G H I x

0 1 1 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 1

1 0 0 1 0 0 0 0 0 1

1 1 1 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.12)

or, for example, a graph in which the nodes are papers, the edges are the other

papers they cite, and the features are the paper abstract or the language embed-

ding of the abstract.

Most graphs are sparse, with fewer edges than square nodes m ≪ n2; therefore,

adjacency lists are an alternative representation for efficient storage. A linked list

represents each vertex and all its edges and adjacent vertices.

7.3 Embeddings

An example of embedding a node in a graph into Rn is an embedding such that

similar nodes in the graph along with their features are embedded to nearby

nodes in the embedding space. Our embedding objective may not be limited to

similarity and may be defined with respect to other properties of the graph and

embedding space. We define an encoder f of a node i ∈ V , such that f(i) is the

embedding of the node feature vector vi as shown in Figure 7.5.
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Figure 7.6 Sub-graph embedding by taking the sum of the embeddings of the nodes in
the sub-graph.

If each node i ∈ V has an associated feature vector vi then a node embed-

ding, maintaining similarity, maps node feature vectors vi to vectors zi in a

low-dimensional space such that the similarity between nodes i and j, denoted

by s(i, j), is maintained in the embedding space. For example, we may opti-

mize for the similarity between nodes i and j, such that their similarity s(i, j) is

maintained after the embedding f(i)T f(j), where f denotes the encoder which

embeds node feature vectors.

A shallow node embedding uses an n × 1-dimensional one-hot encoding ei of

each node i to look up the embedded node. The one-hot encoding ei of a node

i ∈ V is an n × 1 zero vector except for a single 1 in position i. An embedding

matrix W of dimensionality d×n, where d is the dimensionality of a node feature

vector vi and n is the number of nodes, is formed such that each column of W is

the embedding of a different node. Multiplying the d×n embedding matrix W by

the n× 1 one-hot encoded vector ei representing a node i results in Wei, which

is the d× 1 ith column of the matrix W representing the node in the embedding

space. This results in a problem with shallow embeddings: they do not share

weights. As demonstrated earlier, the success of neural networks stems from

representations sharing weights across space in CNNs or across time in RNNs.

This motivates the sharing of weights by aggregating graph neighborhoods in

GNNs, as described in Section 7.5.

We may embed a sub-graph S ∈ G, either by taking the sum of the embeddings

of the nodes in the sub-graph
∑

i∈S f(i), or by taking a representative node j

of the sub-graph and setting the sub-graph embedding to be f(j) as shown in

Figures 7.6 and 7.7.
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Figure 7.7 Sub-graph embedding by taking a representative node of the sub-graph.

7.4 Node Similarity

7.4.1 Adjacency-based Similarity

In node embeddings we define pairwise node similarity and optimize an embed-

ding to approximate similarities. Going beyond shallow node embeddings, we

can define different measures of similarity. For example, we define the similarity

between nodes i and j to be the weight on the edge between them, s(i, j) = Ai,j ,

where A is the weighted adjacency matrix. We then find the matrix W with

dimensions d× n which minimizes the loss:

L =
∑

(i,j)∈V×V
‖f(i)T f(j)−Ai,j‖2 (7.13)

over all pairs of nodes in the graph.

7.4.2 Multi-hop Similarity

The first ring of neighbors of a node, as shown in Figure 7.8, is the node’s

neighborhood. Let A denote the adjacency matrix of 1-hop neighbors, A2 denote

the adjacency matrix of 2-hop neighbors and in general Ak the adjacency matrix

of k-hop neighbors. Then, we can minimize the loss:

L =
∑

(i,j)∈V×V
‖f(i)T f(j)−Ak

i,j‖2 (7.14)

7.4.3 Overlap Similarity

Another measure of similarity is the overlap between node neighborhoods, as

shown in Figure 7.9. Suppose nodes i and j share common nodes in the social

network of mutual friends. We can then minimize the loss function measuring

the overlap between neighborhoods:

L =
∑

(i,j)V×V
‖f(i)T f(j)− Si,j‖2 (7.15)
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Figure 7.8 Graph neighborhoods. Given a root node shown in white, the 1-hop ring of
neighbors is shown in blue, the 2-hop neighbors are shown in green, and the 3-hop
neighbors are in purple.

Figure 7.9 Mutual nodes (shown in purple) are the overlap between node
neighborhoods of nodes i and j.

where Si,j measures the overlap between the neighbors N (i) of node i and neigh-

bors N (j) of node j. The overlap may be measured using the overlap coefficient
|N (i)∩N (j)|

min{|N (i)|,|N (j)|} or Jaccard similarity |N (i)∩N (j)|
|N (i)∪N (j)| .

7.4.4 Random Walk Embedding

We can define an embedding using a random walk from nodes in the graph, as

shown in Figure 7.10. A random walk in a graph begins with a node i ∈ V and
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Figure 7.10 Graph random walk (shown in blue) consists of the nodes on a random
path starting from node i ∈ V and ending in node j ∈ V .

repeatedly walks to one of its neighbors N (i) with probability 1
d(i) for t steps

until reaching an end at node j on the graph.

Running random walks may start from each graph node i multiple times. We

collect all the nodes visited for each node in the walk, and then optimize the

embedding defined by:

f(i)T f(j) ∝ P (i and j co-occur on the random walk) = p(i|j) (7.16)

which is the probability that we reach node j starting a random walk from node

i.

Using the loss function:

L =
∑

i∈V

∑

j∈N (i)

− log p(j|f(i)) (7.17)

where p(j|f(i)) is given by the softmax:

p(j|f(i)) = exp(f(i)T f(j))
∑

j∈N (i) exp(f(i)
T f(j))

(7.18)

DeepWalk (Perozzi et al., 2014) uses a skip-gram model of random walks on a

graph to classify nodes of a graph. Node2vec (Grover and Leskovec, 2016) uses

a random walk on a graph based on both the current node i and the previous

nodes that led to node i. Instead of moving from node i to another node with

probability 1
d(i) , node2vec defines a random walk with probability based on the

length of the shortest path between the previous node and the next node. LINE

(Tang et al., 2015) embeds graph nodes into a low-dimensional space applied to

the task of node classification and link prediction.
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Figure 7.11 Regular graph structure representing neighboring pixels of an image.

Figure 7.12 Irregular graph structure of real-world graphs representing networks.

7.4.5 Graph Neural Network Properties

A CNN has a regular grid structure, as shown in Figure 7.11, which is suitable

for images; however, it is not suitable for real-world graphs, which have irregular

structure, as shown in Figure 7.12.

A naive approach for representing a general graph is to concatenate each node’s

feature vectors to the adjacency matrix and encode each node by the correspond-

ing row of the adjacency matrix and its features. A fully connected network archi-

tecture given a node’s row in the adjacency matrix and features is unsuitable for

graph representation. Having such a vector representation be the input to a fully

connected neural network has numerous limitations. In such a naive network, the

number of parameters is linear in the size of the graph, the network is dependent

on the order of the nodes, and it does not accommodate dynamic graphs. We

want to be able to add or remove nodes to real-world graphs, such as the social

network, without changing the network architecture. The desired properties of

our graph neural network architecture are that the number of parameters is in-

dependent of the graph size, scaling to graphs with billions of nodes, that the
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Figure 7.13 Each node aggregates information from its ring of neighbors.

network is invariant to node ordering, that the operations be local depending

on neighborhoods, that the model accommodates any graph structure, and that

once we learn the properties of one graph, we can transfer them to a new unseen

graph.

7.5 Neighborhood Aggregation in Graph Neural Networks

We consider GNNs that take into account neighbors of each node, aggregating

information from neighboring nodes similar to breadth-first search (BFS); and

the other graph neural network which considers chains from a node, similar to

depth-first search (DFS). In the first architecture, we consider each node in the

graph and pick up the graph from that node as the root, allowing all other nodes

to dangle, building a computation graph where that node is the root. Once

we determine the node computation graph, we will propagate and transform

information from its neighbors, its neighbors’ neighbors, and so on, as shown in

Figure 7.13, where each node consists of a vector containing the features of the

node.

Most GNNs are based on aggregating information into each node from its

neighboring nodes in a layer ℓ and combining that information with the node

features in that layer:

hℓ
i = combineℓ{hℓ−1

i , aggregateℓ{hℓ−1
j , j ∈ N (i)}} (7.19)

where hℓ
i is the feature representation of node i at layer ℓ.

Consider the graph shown in Figure 7.14. We generate embeddings based on

local neighborhoods and aggregate information from neighbors using the neural
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Figure 7.14 A computational graph is constructed for each node, aggregating its
neighbors and in turn from each neighbor.

Figure 7.15 Computational graphs starting from each node in the graph, sharing
weights between different computational graphs for all 1-hop neighbors, 2-hop
neighbors, and 3-hop neighbors. The roots of the computational graphs for each node
form the last layer of the GNN, whereas the leaves and their node features form the
first layer.

network. Consider node A; its neighbors are nodes B, C, and D, and in turn B’s

neighbors are nodes A and C, C’s neighbors are nodes A, B, E, and F , and D’s

neighbor is node A.

Next, we consider each node in turn and generate a computation graph for

each node where that node is the root. Finally, we will share the aggregation

parameters across all nodes for every layer of neighbors, as shown in Figure 7.15.

The gray boxes in each layer in Figure 7.15 represent aggregation parameters,

denoted in the special case below by shared matrices W ℓ and Bℓ for layer ℓ, such

that the aggregation boxes in each layer are identical and shared across nodes.
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In summary, the nodes have embeddings at each layer, and the network shares

aggregation parameters across all nodes in a layer.

We denote the feature vector of a node i by h0
i = xi. A feature vector hℓ

i will

be an aggregation of the feature vectors hℓ−1
j of the neighbors j ∈ N (i) of i and

the feature vector hℓ−1
i of the previous layer embedding. An example of a choice

of aggregation and combination function is:

hℓ
i = σ

⎛

⎝W ℓ
∑

j∈N (i)

hℓ−1
j

|N (i)| +Bℓhℓ−1
i

⎞

⎠ (7.20)

where hℓ
i is the ℓth layer embedding of i, σ is a non-linear activation function and

∑

j∈N (i)

hℓ−1
j

|N (i)| is the average of neighbors in the previous layer embedding. We

have two types of weight matrices: W ℓ is a matrix of weights for neighborhood

embeddings, and Bℓ is a matrix of weights for self-embedding. These matrices

are shared for each layer ℓ across all nodes.

7.5.1 Supervised Node Classification Using a GNN

For the task of node classification, given m labeled nodes i with labels yi we

train a GNN by minimizing the objective:

1

m

m
∑

i=1

L(yi, ŷi) (7.21)

where the predictions ŷi are the softmax of the node representations at the last

layer.

7.6 Graph Neural Network Variants

7.6.1 Graph Convolution Network

A graph convolution network (GCN; Kipf and Welling (2017)) has a similar

formulation using a single matrix for both the neighborhood and self-embeddings

normalized by the product of square roots of node degrees:

hℓ
i = σ

⎛

⎝W ℓ
∑

j∈i∪N (i)

Âi,j
√

d̂j d̂i

hℓ−1
j

⎞

⎠

= σ

⎛

⎝

∑

j∈N (i)

Âi,j
√

d̂j d̂i

W ℓhℓ−1
j +

1

d̂i
W ℓhℓ−1

i

⎞

⎠

(7.22)

where Â = A+ I is the adjacency matrix including self-loops, d̂i is the degree in

the graph with self-loops, and σ is a non-linear activation function. Aggregation

is defined by the term on the left and the combination on the right.
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An equivalent formulation (Wu et al., 2019) is given by:

Hℓ+1 = D̂− 1
2 ÂD̂− 1

2HℓW ℓ (7.23)

where D̂i,i =
∑

j Âi,j .

7.6.2 GraphSAGE

GraphSAGE (Hamilton et al., 2017) concatenates the neighborhood embedding

and self-embedding:

hℓ
i = σ([W ℓaggregate({hℓ−1

j , j ∈ N (i)}), Bℓhℓ−1
i ]) (7.24)

The graph neighborhood aggregation function can be the mean, pooling, or

an LSTM sequence model:

Mean aggregation:
∑

j∈N (i)

hℓ−1
j

|N (i)| (7.25)

Pooling: γ({Qhℓ−1
j , j ∈ N (i)}) (7.26)

LSTM: LSTM([hℓ−1
j , j ∈ π(N (i))]) (7.27)

and the network learns the parameters for aggregating information.

In the training process, we have an output embedding after L layers ei = hL
i

and we learn the weight matrices W ℓ for the neighborhood embedding and Bℓ

for self-embedding. We define a neighborhood aggregation function and a loss

function on embedding and train on a set of nodes generating embeddings for

nodes.

This is useful since once we train the GNN, and compute the aggregation

parameters, namely the weight matrices, we can generalize to new nodes. We

generate a computation graph for a new node and transfer the weight matrices

to the new node and compute a forward pass for prediction. In addition, given an

entire new graph, we can transfer the aggregation weight matrices computed on

one graph to a new graph and compute the forward pass to perform prediction.

7.6.3 Gated Graph Neural Networks

The second architecture, similar to DFS, shares weights across all the layers in

each computation graph, instead of sharing weights across neighborhoods. In

gated graph neural networks (Li et al., 2016) nodes aggregate messages from

neighbors using a neural network, and similar to RNNs parameter sharing is

across layers:

mℓ
i = W

∑

j∈N (i)

hℓ−1
j (7.28)

hℓ
i = GRU(hℓ−1

i ,mℓ) (7.29)
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7.6.4 Graph Attention Networks

In graph attention networks (GATs) (Veličković et al., 2018) we use attention-

based neighborhood aggregation. The attention function adaptively controls the

contribution of neighbor j to node i:

hℓ
i = σ

⎛

⎝

∑

j∈i∪N (i)

αi,jWhℓ−1
j

⎞

⎠ (7.30)

where αi,j are the attention coefficients that define a distribution over node i

and its neighbors k ∈ N (i) using the softmax:

αi,j =
exp(ei,j)

∑

k∈i∪N (i) exp(ei,k)
(7.31)

and ei,j is a function of hℓ−1
i and hℓ−1

j :

ei,j = ReLU(vT (Whℓ−1
i ||Whℓ−1

j ) (7.32)

where || is the concatenation operation, and v and W are a learned vector and

weight matrix. When using multiple attention heads, hℓ
i is the aggregation of

multiple contributions, each of the form of Equation 7.30.

7.6.5 Message-Passing Networks

In a similar fashion to using aggregation and combination, a message-passing

graph neural network is defined by messages between nodes across edges (aggre-

gation) and node updates (combination):

hℓ
i = updateℓ(hℓ−1

i ,
∑

j∈N (i)

messageℓ(hℓ−1
i , hℓ−1

j , ei,j)) (7.33)

7.7 Applications

Graph neural networks are used in a wide range of applications, including (1) im-

age retrieval; (2) computer vision for scene understanding (Santoro et al., 2017);

(3) computer graphics for 3D shape analysis (Monti et al., 2017) and for learn-

ing point-cloud representations (Wang, Sun, Liu, Sarma, Bronstein and Solomon,

2019); (4) social networks for link prediction; (5) recommender systems and few-

shot learning (Garcia and Bruna, 2018); (6) combinatorial optimization (Ma

et al., 2020); (7) physics for learning the dynamics and interactions of physical

objects (Battaglia et al., 2016; Chang et al., 2017; Watters et al., 2017; Sanchez-

Gonzalez et al., 2018; Van Steenkiste et al., 2018); (8) chemistry for molecule

classification (Duvenaud et al., 2015; Gilmer et al., 2017), defining a graph in

which molecules are nodes and edges represent bonds between molecules, and
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molecule design (Jin et al., 2018); (9) biology for drug discovery, protein func-

tion prediction, and protein–protein interactions; (10) for representing computer

programs; (11) in natural language processing; (12) for traffic applications such

as ride hailing and flight classification; and (13) in stock trading.

7.8 Software Libraries, Benchmarks, and Visualization

PyTorch Geometric (Fey and Lenssen, 2019) is a library for deep learning on

graphs in PyTorch. DGL (Wang, Yu, Gan, Zhaoogle, Gai, Ye, Li, Zhou, Huang,

Zheng, Lin, Ma, Deng, Guo, Zhang and Huang, 2020) is an optimized library

for deep learning on graphs in PyTorch and MXNet. OGB (Liu et al., 2020) is a

collection of benchmark datasets, data-loaders and evaluators for deep learning

on graphs.

7.9 Summary

Graph neural networks (Hamilton et al., 2017; Kipf and Welling, 2017; Veličković

et al., 2018; Xu et al., 2019) are applied to irregular structures such as networks

represented by graphs. They commonly share weights across neighborhoods, sim-

ilar to how CNNs share weights across space and RNNs share weights across

time. Graph neural networks are used for three main tasks: (1) predicting prop-

erties of particular nodes, (2) predicting edges between nodes, and (3) predicting

properties of sub-graphs or entire graphs.
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8.1 Introduction

This chapter presents Transformer models, which have state-of-the-art perfor-

mance across many tasks and datasets in a broad range of domains, including

natural language processing, computer vision, audio processing, and program

synthesis. The largest Transformer-based language model to date consists of

around a trillion parameters. These models are trained using vast unlabeled cor-

pora. Replacing labels are objectives based on context at multiple resolutions:

where words occur in a sentence, whether sentences follow each other, and where

sentences occur in a document. Very large Transformer-based models and im-

provements in usage of unlabeled data have led to results that supersede the

largest available supervised counterparts and significant progress in real-world

applications.

Transformers are based only on attention mechanisms (Vaswani et al., 2017)

without using RNNs or CNNs. Transformers may be classified into three types

of architectures: (1) autoencoding Transformers, which is a stack of encoders;

(2) auto-regressive Transformers, which is a stack of decoders; or (3) sequence-

to-sequence Transformers, which is a stack of encoders connected to a stack of

decoders. In the latter case, the input to the first encoder is a word embed-

ding and a position embedding. Each encoder consists of a self-attention layer

and a neural network passing its output as input to the next encoder in the

stack of encoders. Each decoder contains a self-attention layer, followed by an

encoder–decoder attention layer, followed by a neural network. Each decoder

passes its output as input to the next decoder in the stack of decoders. Us-

ing self-attention in the encoders and both encoder–decoder and self-attention

in the decoders results in state-of-the-art results in machine translation. The

Transformer architecture does not use RNNs or CNNs, which results in faster

training time.
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8.2 General-Purpose Transformer-Based Architectures

8.2.1 BERT

Bidirectional encoder representations from Transformers (Devlin et al., 2019),

known as BERT, is a general-purpose Transformer-based architecture that achieves

state-of-the-art performance on many natural language processing tasks and

datasets:

• multi-genre natural language inference of sentence entailment, contradiction,

or neutral pairs (Williams et al., 2018);

• Quora question pairs which classifies semantically equivalent sentences (Chen,

Zhang, Zhang and Zhao, 2018);

• question natural language inference of labeled question–answer pairs (Wang,

Singh, Michael, Hill, Levy and Bowman, 2019);

• Stanford sentiment treebank of movie review sentiments (Socher et al., 2013);

• corpus of linguistic acceptability of sentences (Warstadt et al., 2019);

• semantic textual similarity benchmark (Cer et al., 2017);

• Microsoft research paraphrase corpus annotating semantically equivalent sen-

tences (Dolan and Brockett, 2005);

• recognizing a textual entailment task of bidirectional entailment (Bentivogli

et al., 2009);

• Winograd NLI dataset for language inference (Morgenstern and Ortiz, 2015);

• Stanford question answering dataset (SQuAD) (Rajpurkar et al., 2016);

• CoNLL 2003 named entity recognition (NER) dataset (Sang and Meulder,

2003);

• situations with adversarial generations (SWAG) dataset of common-sense sen-

tence completion (Zellers et al., 2018).

The BERT architecture is a deep bidirectional autoencoding Transformer. In

BERT, each input word, or token, is represented by a token embedding, a segment

embedding, and a position embedding. Next, a small fraction of all tokens in

each sentence is randomly masked, and the goal of encoding self-attention is to

complete the masked words. In addition, BERT learns to predict whether the

relationship between two consecutive sentences is random or not, which is useful

for question answering by concatenating the two sentences in random order with

a separator token between them. Finally, the output sentence is represented using

the hidden state of a classification token, which serves as input to a classifier that

is fine-tuned on top of BERT.

8.3 Self-Attention

Sequence models, described in Chapter 6, perform computations on the input se-

quentially, whereas Transformers perform computations in parallel. Transformers
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are based on self-attention (Vaswani et al., 2017), which generates a representa-

tion for each word in the input in parallel. We begin by representing n words in a

sentence using word embedding so that each embedded word is a d-dimensional

vector xi ∈ R
d and the sentence X = [x1, . . . , xn]

T ∈ R
n×d is an n × d matrix.

This representation does not take into account the surroundings of the word in a

specific sentence. Therefore, for a sentence with n words, self-attention computes

n self-attention representations A1, . . . , An for the n words. This computation is

performed in parallel.

For each embedded word xi ∈ R
d we compute a query qi ∈ R

d, a key ki ∈ R
d

and a value vi ∈ R
d, represented as row vectors (of matrices X, Q, K, and V ),

by linearly projecting X into three d-dimensional spaces of keys, queries, and

values:

Q = XWQ, K = XWK , V = XWV (8.1)

where Q,K, V are n× d-dimensional matrices whose rows i are the queries qi =

xiW
Q, keys ki = xiW

K , and values vi = xiW
V for each embedded word. X ∈

R
n×d is the n × d matrix representing the sequence, or sentence, of embedded

words, and WQ, WK , and WV are learned d×d matrices. We compute the inner

product between qi and kj for each j = 1, . . . , n. Next, we compute the softmax

multiplied by word values vi to get the self-attention representation Ai ∈ R
d for

embedded word xi:

Ai(q,K, V ) =
n
∑

i=1

exp(qki)
∑

j exp(qkj)
vi (8.2)

which may be summarized for all words i = 1, . . . , n as:

A(X) = A(Q,K, V ) = softmax

(

QKT

√
dk

)

V (8.3)

where A(X) is an n × d matrix and d is a scaling factor of the dot product

attention.

8.4 Multi-head Attention

Multi-head attention performs self-attention multiple times. Instead of inner

products, the query, key, and value vectors are multiplied by matrices WQ
h qj ,

WK
h kj , W

V
h vj for h = 1, . . . ,m and the attention representations:

Ah(X) = Ah(Q,K, V ) = Ah(W
Q
h Q,WK

h K,WV
h V ) = softmax

(

QhK
T
h√

d

)

Vh

(8.4)

are computed for each head h = 1, . . . ,m, for each embedded word i. The m

multi-head attention representations Ah(X) for h = 1, . . . ,m are concatenated

and multiplied:

multiheadattn(X) = [A1(X), . . . , A (X)]W o (8.5)
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Figure 8.1 Multi-head attention. Given an embedded sequence X of dimensions n× d

and position embedding as input, for each attention head we compute queries Q, keys
K, and values V represented by d× d matrices, which are passed to the multi-head
attention layer.

where W o is an md × d learned matrix. Multi-head attention is illustrated in

Figure 8.1. We first compute the sum of an embedded sequence X of dimensions

n×d and position encoding P as input. Next, for each attention head, we compute

queries Q, keys K, and values V represented by d×d matrices, which are passed

to the multi-head attention layer whose output is of dimensions n× d.

8.5 Transformer

Given sentences of embedded words, a Transformer may be used for diverse

tasks such as natural language understanding, text generation, and translation

of a sentence from one language to another. A Transformer consists of encoder

or decoder blocks or both.

8.5.1 Positional Encoding

The position of words is required for computing the attention score. The positions

of the words in the sentence are encoded as a position embedding by sine and

cosine functions and added to X (Vaswani et al., 2017). Specifically, an n × d

position embedding matrix P is defined by:

Ppos,2i = sin

(

pos

10, 000
2i
d

)

, Ppos,2i+1 = cos

(

pos

10, 000
2i
d

)

(8.6)

where pos is the position of a word in a sentence, d is the dimension of a word

embedding index i = 1, . . . , d. Adding P to X allows the model to learn to attend

to relative positions.

8.5.2 Encoder

The encoder block takes as input a matrix X of embedded words. The position

encoding is added to the embedded words to form the input X + P . We then
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compute queries Q, keys K, and values V , and pass them through a multi-head

attention layer whose output is fed to a feed-forward neural network. A block

consisting of multi-head attention and feed-forward neural network is repeated

multiple times.

8.5.3 Decoder

The output of the encoder is fed into a decoder block, which predicts the trans-

lated sentence. The decoder also consists of multiple blocks of multi-head at-

tention, which are fed into feed-forward neural networks and add positional em-

beddings to the inputs. Both the encoder and decoder may consist of residual

connections between blocks and add and norm layers for normalization before

the feed-forward neural networks. The output of the decoder is fed through a

linear layer followed by a softmax layer. During generation, the decoder predicts

new words, whereas during training, the decoder predicts masked words from

the input.

8.5.4 Pre-training and Fine-tuning

Pre-training a Transformer is computationally expensive and most often involves

vast amounts of unlabeled data. The most common optimization objectives for

pre-training language models are (1) masked word prediction, which is predict-

ing a random deleted word in a sentence or predicting the next word; and (2)

classifying whether two sentences follow each other or not. This computation-

ally expensive step is usually done once, followed by a relatively fast fine-tuning

step. In fine-tuning, the pre-trained model is tuned on a specific dataset and

task. Fine-tuning may be performed on a relatively small dataset very efficiently

for specific usage. Pre-training followed by fine-tuning is referred to as transfer

learning.

8.6 Transformer Models

Transformers may be roughly split into three classes: (1) autoencoding Trans-

former models that use only an encoder, which is suitable for natural language

understanding; (2) auto-regressive Transformer models that use only a decoder,

which is suitable for text-generation tasks; and (3) sequence-to-sequence Trans-

former models that use both an encoder and decoder.

8.6.1 Autoencoding Transformers

Encoder Transformers, also known as autoencoding models, use only an en-

coder. These models are suitable for natural language understanding tasks such
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as question answering, sentence classification, and other tasks that require un-

derstanding entire sentences. These Transformers include BERT, ALBERT (Lan

et al., 2020), DistilBERT (Sanh et al., 2019), and RoBERTa (Liu, Ott, Goyal,

Du, Joshi, Chen, Levy, Lewis, Zettlemoyer and Stoyanov, 2019). BERT has been

extended and improved in several ways: RoBERTa (Liu, Ott, Goyal, Du, Joshi,

Chen, Levy, Lewis, Zettlemoyer and Stoyanov, 2019) improves BERT training

and results by fine-tuning hyperparameters; ALBERT (Lan et al., 2020) adds

a self-supervised loss to model inter-sequence coherence; and DistilBERT (Sanh

et al., 2019) reduces the BERT model size while maintaining performance. BERT

is based on the Transformer architecture and uses a mask token for training but

not for testing. BERT predicts multiple mask tokens in parallel without modeling

direct dependencies between different predictions.

8.6.2 Auto-regressive Transformers

Decoder Transformers, also known as auto-regressive models, use only a de-

coder. These models are well suited for text generation and include GPT (Rad-

ford et al., 2018), GPT-2 (Radford et al., 2019), CTRL (Keskar et al., 2019),

Transformer XL (Dai et al., 2019), and XLNet (Yang, Dai, Yang, Carbonell,

Salakhutdinov and Le, 2019). A limitation of the Transformer architecture is

that it processes the entire sequence at once, which may be a very long se-

quence of words. The Transformer XL (Dai et al., 2019) splits a long sequence

of words into segments and adds a recurrent layer between Transformers, al-

lowing us to process fixed-sized inputs while modeling long-term relationships.

The Transformer uses an absolute position embedding, whereas the Transformer

XL breaks the sequence into segments and embeds the relative distance between

words. XLNet (Yang, Dai, Yang, Carbonell, Salakhutdinov and Le, 2019) is based

on the Transformer XL architecture and models the dependencies between mul-

tiple predictions by predicting tokens in a random order sequentially, improving

performance over BERT across the different natural language processing tasks.

GPT is a pre-trained auto-regressive Transformer fine-tuned on multiple natural

language processing tasks. GPT-2 (Radford et al., 2019) is trained with 1.5 bil-

lion parameters. CTRL (Keskar et al., 2019) is a conditional Transformer-based

model providing control over the generated text style and content, trained with

1.63 billion parameters.

8.6.3 Sequence-to-Sequence Transformers

BART (Lewis et al., 2020) and T5 (Raffel et al., 2020) are sequence-to-sequence

Transformer models that use both an encoder and decoder. Such models are

suitable for translation, summarization, paraphrasing, and question answering

that involve generating sentences from input.
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8.6.4 GPT-3

In a race to build more powerful Transformer-based language models, the number

of model parameters has increased by orders of magnitude. GPT-3 (Brown et al.,

2020) is trained with 175 billion parameters and performs well on multiple tasks

even without fine-tuning, by zero-shot (without any examples) or few-shot (given

a few examples) learning.

Building upon the Megatron-LM model (Shoeybi et al., 2019), trained with 8.3

billion parameters, and the Turing NLG model, trained with 17 billion parame-

ters, Nvidia and Microsoft joined forces to train Megatron-Turing NLG, which

is currently one of the largest natural language processing Transformers, with

530 billion parameters. The number of parameters of the largest Transformer

models is growing tenfold each year. Transformers will soon reach 100 trillion

parameters at this rate, which is a significant milestone since that is roughly the

number of connections in a human brain.

8.7 Vision Transformers

In a similar fashion to language models trained by predicting masked words in

a sentence or the next word, vision Transformers (ViT) may be trained by pre-

dicting a masked pixel in a patch or the next pixel. Vision Transformers have

superseded convolutional neural networks (CNNs) in scalability and performance

across various applications, including object detection, recognition, and segmen-

tation. Early efforts include the Image Transformer (Parmar et al., 2018), used

for image generation. The Vision Transformer (Dosovitskiy et al., 2020) is used

for image recognition at scale. It splits an image into non-overlapping patches,

embeds the patches, and passes them through a Transformer architecture. In

early computer vision, scientists manually designed filters. Next, CNNs learned

these filters automatically by backpropagation; however, they required humans

to design a suitable architecture. The use of Transformers in computer vision is

yet another step forward. The Transformer does not require specific inductive

biases in the architecture. Nevertheless, its performance supersedes CNNs, whose

architecture is based on a strong inductive bias for processing images.

Various Transformer architectures have been used for object recognition. Be-

ginning with a CNN architecture and replacing part of the layers with Trans-

former layers results in hybrid architectures such as VT (Wu et al., 2021) and

BotNet (Srinivas et al., 2021), whose performance improves upon CNNs. Begin-

ning with a Transformer architecture and introducing inductive biases by local

computations, as performed in CNN layers, results in hybrid architectures such as

the data-efficient image Transformer (Touvron et al., 2021) (DeiT) and ConViT

(d’Ascoli et al., 2021). Hierarchical Transformer architectures reduce computa-

tional complexity while maintaining performance. These include the pyramid

vision transformer (Wang, Xie, Li, Fan, Song, Liang, Lu, Luo and Shao, 2021),
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which uses a hierarchical pyramid architecture with non-overlapping patches,

and the shifted windows Transformer (Liu, Lin, Cao, Hu, Wei, Zhang, Lin and

Guo, 2021), which uses local self-attention.

Detection with Transformer (Carion et al., 2020) (DETR) combines a CNN

with an encoder–decoder Transformer architecture, avoiding manually designed

object detection components such as sample selection and non-maximum sup-

pression. Deformable DETR (Zhu et al., 2021) improves the computational ef-

ficiency of DETR by applying attention to a sparse set of sampled locations.

To avoid the collection of a large labeled training set, unsupervised pre-training

DETR (Dai et al., 2021) pre-trains a model on random image patches that serve

as queries for the decoder.

Video may be treated as a volume consisting of image slices in time. Trajecto-

ries may also model the temporal correspondence of physically moving objects

in a video. Video Transformer (Patrick et al., 2021) uses self-attention of trajec-

tories for the task of video action recognition.

8.8 Multi-modal Transformers

Rather than modeling language and vision independently, multi-modal Trans-

formers use these modalities together to form multi-modal Transformers with ap-

plications in multi-modal search and generation. For example, DALL-E (Ramesh,

Pavlov, Goh and Gray, 2021; Ramesh et al., 2022) is a generative model that is

trained jointly on both text and images. The model then receives text describing

an image as input and generates an image matching the description.

Transformers have been used in a variety of multi-modal settings, including

(1) text and images, by models such as VilBERT (Lu et al., 2019), Vl-BERT (Su

et al., 2020), LXMERT (Tan and Bansal, 2019), VisualBERT (Li et al., 2020),

and Vokenization (Tan and Bansal, 2020); (2) text and video, by models such as

VATT (Akbari et al., 2021), VideoBERT (Sun et al., 2019), and video question

answering (Kant et al., 2020); and (3) audio and video, such as by a model

for learning contextual multi-lingual multi-modal representations (Huang et al.,

2021). Sharing parameters across these modalities (Lee et al., 2021) significantly

reduces the number of parameters of such multi-modal Transformers.

8.9 Text and Code Transformers

OpenAI Codex (Chen et al., 2021) is a Transformer model trained on text and

fine-tuned on code. Codex is used within GitHub-Copilot (OpenAI, 2021) to

guide programming by completing and writing code and documentation. Codex

is used for solving many university-level math, statistics and other STEM courses

(Drori et al., n.d.; Shporer et al., 2022; Tang et al., 2022) by program synthesis

and few-shot learning. Question solutions and programs share an underlying tree
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representation. Codex correctly solves questions by specifying both question and

programming contexts, such as which programming packages to load. In addition

to generating code that solves problems, the resulting code generates useful plots

for understanding the solutions.

8.10 Summary

Transformers, also referred to as foundation models (Bommasani et al., 2021),

have become a mainstream architecture in deep learning. Huggingface (Wolf

et al., 2020) is a commonly used open-source Transformer platform that consists

of multiple models, datasets, and libraries. Transformers have disrupted various

fields, including natural language processing, computer vision, audio process-

ing, programming, and education. The number of parameters of Transformers

is increasing by an order of magnitude each year and is on track to surpass the

number of connections in the human brain. New scalable deep learning archi-

tectures such as the Transformer are poised to revolutionize the way machines

perceive the world, make decisions (Chen, Lu, Rajeswaran, Lee, Grover, Laskin,

Abbeel, Srinivas and Mordatch, 2021), and generate novel output.



Part III

Generative Models





9 Generative Adversarial Networks

9.1 Introduction

Generative adversarial networks (GANs) are an unsupervised generative model

used for generating samples that are similar to training examples. They have

many applications, including image, video, 3D, trajectory, audio, protein and

language synthesis. Common image synthesis applications include image trans-

lation, super-resolution, style synthesis, image completion, pose synthesis, image

editing, text-to-image synthesis, and medical imaging. Widely used audio synthe-

sis applications include text-to-speech synthesis and music synthesis. In addition

to these applications, GANs have also been used for generating images from text,

audio from images, and images from audio.

The task of classification maps a set of examples to a label. In contrast, gener-

ative models such as GANs map a label to a set of examples. Since there may be

many examples with the same label, this generative mapping is stochastic and

therefore this generative process involves sampling from a random distribution.

GANs were introduced in 2014 (Goodfellow et al., 2014) as a minimax opti-

mization problem or a zero-sum game in which two agents, a generator and a

discriminator, compete with each other. The generator is trained to produce fake

examples that fool the discriminator. The generator learns to synthesize samples

which are indistinguishable from real data. The generator’s synthesized samples

serve as negative examples for the discriminator. The discriminator learns to

distinguish between the generator’s fake synthesized samples and real data. The

discriminator penalizes the generator for synthesizing samples which it is able to

classify correctly.

The generator and the discriminator are trained alternately. The generator

is trained to produce samples that are indistinguishable from real data. The

discriminator is trained to distinguish between the generator’s fake samples and

real data. Generative adversarial networks have been shown to be able to generate

high-quality samples in a wide variety of applications.

9.1.1 Progress

The field of GANs has seen exponential growth in research and applications,

improving the results of GANs in quality and diversity, while stabilizing GAN
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Figure 9.1 Photo-realistic faces synthesized using GANs: the images are of high
quality and diverse.

training, and understanding the game-theoretic foundations. From initial low-

resolution blurry image results in 2014, GANs have reached a level of photo-

realistic synthesis results (Wang, 2019), as shown in Figure 9.1. Given data from

a real distribution, the goal of the generator is to synthesize additional sam-

ples from the same distribution. Milestones in the development of GANs since

their introduction (Goodfellow et al., 2014) include architectures such as deep

convolutional generative adversarial networks (DCGAN) (Radford et al., 2015),

progressive GAN (Karras et al., 2018), conditional GAN (CGAN) (Isola et al.,

2017), cycle-consistent GAN (CycleGAN) (Zhu et al., 2017), single image GAN

(Shaham et al., 2019); using the Wasserstein loss (Arjovsky et al., 2017) and the

optimistic gradient descent ascent (OGDA) algorithm (Daskalakis et al., 2017)

for training GANs. Recent GANs have overcome their initial limitations, includ-

ing their difficulty in training, and their lack of exploration of the probability

space.

9.1.2 Game Theory

Generative adversarial networks are a class of generative models that aim to

learn a distribution from training data and then generate new samples from this

distribution. The setting is that of two neural networks: a generator network

G and a discriminator network D. The generator is trained to produce samples
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that are indistinguishable from the training data. The discriminator is trained

to distinguish between real and fake samples. The generator and discriminator

are trained simultaneously in an adversarial setting, where the generator tries

to fool the discriminator by producing realistic samples, while the discriminator

tries to distinguish real from fake samples.

The discriminator and generator form two dueling networks with opposing

objectives. This unsupervised setting eliminates the need for labels, since the

label is whether the sample is real or not. Real data acquired from the real world

without any label is abundant. From a game-theoretic viewpoint, we have two

neural networks with a minimax objective.

9.1.3 Co-evolution

From a biological viewpoint, GANs are two neural networks that evolve by co-

evolution. An example of co-evolution in nature is the evolution of a predator,

such as the cheetah, and prey, such as the antelope, that co-evolved for rapid fight

and herd flight in an evolutionary arms race. Another example of co-evolution

in nature is the long-beaked hummingbird and flowers with long petals, which

co-evolved for pollination and feeding.

The cheetah–antelope arms race and the hummingbird–flower arms race are

examples of co-evolution in nature, where one species evolves in response to

changes in the other species. There have been many studies of co-evolution in

nature, and the theory of co-evolution has been very successful in describing how

species co-evolve in nature. However, there has been a limitation on the appli-

cation of the theory of co-evolution in nature to artificial systems because of the

lack of co-evolution in the interaction between two neural networks. Generative

adversarial networks are two neural networks that evolve by co-evolution, which

can be regarded as a generalization of the theory of co-evolution in nature, and

can be applied to artificial systems. In other words, GANs are one of the first

types of artificial systems in which co-evolution occurs.

In the case of GANs, the two neural networks are called the generator and

the discriminator. The generator learns to produce images that are similar to

the training data. The discriminator learns to distinguish between real images

and fake images produced by the generator. The generator and discriminator are

trained together by a joint optimization algorithm.

9.2 Minimax Optimization

A minimax optimization problem or saddle-point problem is defined by:

min
x

max
y

f(x, y) (9.1)

which is a zero-sum game.

Generative adversarial networks (Goodfellow et al., 2014) as illustrated in
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Figure 9.2 Generative adversarial network.

Figure 9.2, were formulated as a minimax optimization problem or a zero-sum

game in which two agents, a generator G and a discriminator D, compete:

min
G

max
D

V (G,D) = Ex[logD(x)] + Ez[log(1−D(G(z)))] (9.2)

The minimax game is a zero-sum game. The discriminator’s loss is the genera-

tor’s gain; the generator’s loss is the discriminator’s gain. The term D(x) is the

discriminator’s estimated probability that real data x is real, and Ex is the ex-

pectation over the real data. The term G(z) is the output of the generator given

random noise z. The term D(G(z)) is the discriminator’s estimated probability

that a synthesized sample is real, and Ez is the expectation over random noise

input, that is over the generator’s synthesized samples. The goal of the gener-

ator is to generate a signal from random noise z ∼ P (z) in a way that it will

be difficult for the discriminator to distinguish between the generated and real

data x ∼ Pdata. The goal of the discriminator is to classify correctly real and

generated data. The game between the generator and discriminator is a minimax

optimization problem.

Representing the generator G by a neural network with parameters θ and the

discriminator D by a neural network with parameters φ yields:

min
θ

max
φ

V (Gθ,Dφ) = Ex∼Pdata
[logDφ(x)] + Ez∼Pz

[log(1−Dφ(Gθ(z)))] (9.3)

= Ex∼Pdata
[logDφ(x)] + Ex∼PG

[log(1−Dφ(x))] (9.4)

Since both the generator and discriminator are represented by neural networks

the problem is non-convex non-concave (Lin et al., 2020). This formulation as a

zero-sum game has been called a saturating GAN (Goodfellow et al., 2014) since

initially it did not work due to saturation of gradients which become small and

do not converge to a solution. The first term of logD(x) is independent of the

generator and therefore the generator minimizes the function log(1−D(G(z))). To
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fix this saturation problem, a non-saturating GAN formulation was introduced

(Goodfellow et al., 2014) which is not a zero-sum game, changing the generator

loss to maximize logD(G(z)) instead.
The goal of a GAN is to mimic a probability distribution and therefore it

uses a loss function that represents the distance between the distribution of the

synthesized samples and the distribution of the real data. A GAN has two loss

functions, one for the discriminator and the other for the generator, and both are

derived from a measure of similarity between the distribution of the synthesized

samples PG and the distribution of the real data Pdata. The first term in Equation

9.2 depends only on the real data, and therefore training of the generator only

involves the second term of Equation 9.2, which depends on the synthesized

samples.

9.3 Divergence between Distributions

The relative entropy or Kullback–Leibler (KL) divergence DKL is a measure of

how one probability distribution p diverges from another probability distribution

q and is defined by:

DKL(q(x)||p(x)) =
∫

q(x) log
q(x)

p(x)
dx (9.5)

which is non-negative and asymmetric. The Jensen–Shannon (JS) divergence

DJS is a symmetric smooth version of the KL divergence defined by:

DJS(q||p) =
1

2
DKL(q||m) +

1

2
DKL(p||m) (9.6)

where m = 1
2 (p + q). The KL divergence and JS divergence are both special

cases of the Bregman divergence. The Bregman divergence is defined by a convex

function F and is a measure of distance between two points p and q defined by:

DF (p, q) = F (p)− F (q)− 〈∇F (q), p− q〉 (9.7)

Each convex function F defines a different divergence. Different divergences

are explored with the goals of overcoming the problem of vanishing gradients and

improving GAN training stability and diversity. For the special case of F (p) =

p log(p) we get:

DF (p, q) = p log(p)− q log(q)− (log(q) + 1)(p− q)

= p log

(

p

q

)

+ (q − p)
(9.8)

which is the generalized KL divergence. For the special case of F (p) = p log(p)−
(p + 1) log(p + 1) we get the JS divergence, which leads to the original GAN

formulation (Goodfellow et al., 2014).
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9.3.1 Least Squares GAN

The special case of F = (1− p)2 results in the Pearson χ2 divergence leading to

the least-squares GAN (LS-GAN) formulation (Mao et al., 2017), which uses a

least squares loss function for the discriminator:

Ex[(D(x)− 1)2]− Ez[D(G(z))2] (9.9)

and generator:

Ez[(D(G(z))− 1)2] (9.10)

providing a smoother loss.

9.3.2 f -GAN

Choosing different convex functions F leads to different GAN formulations, also

known as f -GANs (Nowozin et al., 2016).

9.4 Optimal Objective Value

Setting the generator G to be fixed and optimizing the discriminator by setting

the derivative of:

LD(x) = Pdata logD(x) + PG log(1−D(x)) (9.11)

to be zero, results in the optimal discriminator D⋆:

D⋆(x) =
Pdata

Pdata + PG
(9.12)

Plugging the optimal discriminator D⋆ into Equation 9.2 results in:

min
G

V (G,D⋆) = 2DJS(Pdata||PG)− 2 log 2 (9.13)

where the JS divergence DJS(Pdata, PG) is:

DJS(Pdata, PG) =
1

2
(DKL(Pdata,

Pdata + PG
2

) +DKL(PG ,
Pdata + PG

2
)) (9.14)

Therefore, the optimal value of V is obtained when the distribution of real data

is equal to the generator distribution Pdata = PG . In this case the discriminator

cannot distinguish between real and synthesized data, namely D⋆(x) = 1
2 , and

the JS divergence DJS is zero, optimizing the GAN objective.

9.5 Gradient Descent Ascent

A common algorithm used to solve the minimax optimization problem in Equa-

tion 9.1 is gradient descent ascent (GDA), which alternates between gradient
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descent on x and gradient ascent on y. The minimization variable is updated by

gradient descent:

xt+1 = xt − ηx∇xf(xt, yt) (9.15)

and the maximization variable is updated by gradient ascent:

yt+1 = yt + ηy∇yf(xt, yt) (9.16)

where ηx and ηy are the learning rates.

In our setting we use a stochastic variant of GDA with mini-batches, in which

the descent update ∇xf(xt, yt) for the generator neural network is:

∇θV (Gθ,Dφ) =
1

m
∇θ

m
∑

i=1

log(1−Dφ(Gθ(z
i))) (9.17)

and the ascent update ∇yf(xt, yt) for the discriminator neural network is:

∇φV (Gθ,Dφ) =
1

m
∇φ

m
∑

i=1

(logDφ(x
i) + log(1−Dφ(Gθ(z

i)))) (9.18)

If f were convex–concave then playing the game simultaneously or in a sequential

order would not matter; however, in our case f is non-convex non-concave and the

order matters. Therefore, the updates are performed sequentially in our setting,

which is a zero-sum sequential game, also known as a Stackelberg game. In

practice the algorithm takes multiple ascent steps, denoted by γ, for each descent

step, denoted by γ-GDA.

Unfortunately, GDA may converge to points that are not local minimax or fail

to converge to a local minimax. A modification of GDA (Wang, Zhang and Ba,

2020) which partially addresses this issue is:

yt+1 = yt + η∇yf(xt, yt) + ηH−1
yy Hyx∇xf(xt, yt) (9.19)

which converges and only converges to local minimax points, driving the gradient

quickly to zero and improving GAN convergence.

9.6 Optimistic Gradient Descent Ascent

When introduced, GANs were implemented using momentum. However, later on

the implementations did not use momentum, and using a negative momentum

made the saturating GAN work. An algorithm that solves the minimax opti-

mization problem by using negative momentum is optimistic gradient descent

ascent; (Daskalakis et al., 2017). This adds negative momentum terms to the

gradient updates:

xt+1 = xt − ηx∇xf(xt, yt)− ηx(∇xf(xt, yt)−∇xf(xt−1, yt−1)) (9.20)

yt+1 = yt + ηy∇yf(xt, yt) + ηy(∇yf(xt, yt)−∇yf(xt−1, yt−1)) (9.21)
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Optimistic gradient descent ascent yields better empirical results than GDA, and

can be interpreted as an approximation of the proximal point method.

9.7 GAN Training

In the beginning of training of the generator and discriminator, the generator

synthesizes samples that are not similar to real data and the discriminator easily

classifies the generated samples as fake. As training progresses, the generator

improves and synthesizes samples that are able to fool the discriminator into

classifying them as real data. When the generator training is successful, the

discriminator cannot distinguish between real data and fake samples synthesized

by the generator. The generator and discriminator are represented by neural

networks and are both trained by backpropagation. The output of the generator

serves as input to the discriminator, as shown in Figure 9.2.

9.7.1 Discriminator Training

The discriminator loss serves as a signal to the generator for updating its param-

eters by backpropagation. The discriminator shown in Figure 9.3 is a classifier

that tries to distinguish between real data and samples synthesized by the gener-

ator. Training the discriminator uses real data as positive examples and samples

synthesized by the generator as negative examples. When the discriminator is

trained, the generator is not trained and its parameters are held fixed. The gener-

ator synthesizes samples so that the discriminator can train using these generated

samples. When the discriminator is training it ignores the generator’s loss func-

tion and uses only its own loss function, classifying real data and fake samples

synthesized by the generator. The discriminator loss penalizes the discriminator

for mis-classifying real data as fake and vice versa, and the discriminator weights

are updated by backpropagation.

9.7.2 Generator Training

The generator shown in Figure 9.4 learns to synthesize realistic samples by the

feedback it receives from the discriminator. The input to the generator is ran-

dom noise, which it learns to transform to synthesized samples randomly spread

across the output distribution. Usually the input random noise is sampled from

a lower dimensional space than the output synthesized sample. During generator

training the discriminator parameters are held fixed. The discriminator network

classifies the synthesized samples and the generator’s loss function penalizes the

generator if it does not succeed in fooling the discriminator into classifying its

synthesized samples as real. During generator training the gradients are back-

propagated through both the discriminator network and the generator network.
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Figure 9.3 GAN discriminator network.

Figure 9.4 GAN generator network.

Even though the discriminator weights are not updated during generator train-

ing, the discriminator’s fixed weights influence the update of generator parame-

ters.

9.7.3 Alternating Discriminator–Generator Training

Generative adversarial network training alternates between training the discrim-

inator and the generator. The discriminator loss function is usually different from

the generator loss function. The discriminator trains for several epochs, then the

generator trains for several epochs. This alternating training is repeated. Algo-

rithm 9.1 provides pseudocode for GAN training.

During training, as the generator increases the similarity between the synthe-

sized samples and real data, the discriminator classification accuracy decreases.

If the generator training is successful, the discriminator classification accuracy is

random. This in turn results in providing uninformative feedback to the discrimi-

nator, which illustrates the difficulty of convergence of this saddle-point problem.

Solutions to the convergence problem include adding noise to the discriminator’s
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Algorithm 9.1 Alternating GAN training. During training of the discriminator

the generator parameters are held fixed and vice versa.

for each epoch i = 1, . . . , n do:

Sample mini-batch from real data x1, . . . , xm ∼ Px

Sample mini-batch from noise z1, . . . , zm ∼ Pz

Take gradient ascent step on discriminator parameters φ by Eq. 9.18

Take gradient descent step on generator parameters θ by Eq. 9.17

input or penalizing the discriminator weights, which are regularization methods

that improve GAN convergence.

9.8 GAN Losses

As described, different Bregman divergences and loss functions have been ex-

plored with the goals of improving GAN training stability and diversity. Notably,

using the Earth Mover’s Distance (EMD) in the Wasserstein GAN formulation

has had a fundamental contribution to improving GAN training.

9.8.1 Wasserstein GAN

If the real data distribution and generator distribution do not overlap, then the JS

divergence is zero, DJS = 0, which occurs even if both distributions are identical

but translated. This demonstrates the problem with using the JS divergence for

optimizing GANs when distributions have non-overlapping support. Fortunately,

this issue has been resolved by using the EMD or Wasserstein-1 distance:

W (P,Q) = min
γ∈∏

(P,Q)
E(x,y)∼γ‖x− y‖ (9.22)

where γ denotes how much mass, or earth, must be moved from x to y in order

to transform distribution P into distribution Q, and
∏

(P,Q) denotes the set of

all disjoint distributions with marginals P and Q. The EMD is the cost of the

optimal transport plan and has nicer properties for GAN optimization than the

JS divergence. Computing W (P,Q) is intractable since it requires considering all

possible combinations of pairs of points between the two distributions, computing

the mean distance of all pairs in each combination, and taking the minimummean

distance across all combinations. Fortunately, an alternative is to solve a dual

maximization problem that is tractable, which results in the Wasserstein loss.

A GAN uses the minimax loss in which the discriminator outputs a probability

in [0, 1] of a sample being real or synthesized. In contrast, a WGAN (Arjovsky

et al., 2017) uses a Wasserstein loss formulation for the discriminator, which

outputs a real value that is larger for real data than synthesized samples. The

WGAN discriminator is called a critic since it does not output values in [0, 1] for
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performing classification. There is no sigmoid in the final layer of the discrimi-

nator, and the range is [−∞,∞]. The Wasserstein loss function is:

min
G

max
D

V (G,D) = Ex[D(x)]− Ez[D(G(z))] (9.23)

where D(x) is the critic output given real data, G(z) is the generator output

given noise and D(G(z)) is the output of the critic given synthesized sam-

ples. This means that the critic maximizes the difference between its expected

output on real data and synthesized samples. The generator loss function is

−Ez∼P (z)[D(G(z))], which means that the generator minimizes the negative out-

put of the critic on samples synthesized by the generator.

The Wasserstein loss function is derived from the EMD between the distri-

bution of the real data and the distribution of the synthesized samples. An

advantage of using the EMD is a metric between distributions, which handles

disjoint distributions without overlapping support. The weights in a WGAN are

clipped to within a constant range, and the WGAN avoids vanishing gradients.

The Wasserstein loss avoids vanishing gradients even if the critic is optimally

trained.

We want the generator to synthesize diverse samples, for example, to synthesize

a different sample for each different random input. The generator may learn to

synthesize a small set of samples very well, which the discriminator fails on. If

the generator repeatedly synthesizes the same samples, the discriminator may

learn to reject those samples. However, suppose the discriminator gets stuck

in a local minimum and does not find the optimal strategy. The generator may

optimize the output that will fail the discriminator in the next generator-training

iteration.

If, at each iteration, the generator optimizes for a specific discriminator and

the discriminator cannot correctly classify the synthesized samples as fake, the

generator will synthesize a small set of samples, not diverse samples, known as

mode collapse. The Wasserstein loss trains the critic toward optimality with-

out vanishing gradients. When the critic does not get stuck in local minima, it

learns to reject the generator’s repeated samples, encouraging the generator to

synthesize new samples and diversify the result.

9.8.2 Unrolled GAN

In order to avoid mode collapse and encourage the generator to diversify the

synthesized samples and not optimize for a constant discriminator, the genera-

tor loss function may be modified to include multiple subsequent discriminators

(Metz et al., 2017). There is a classical tradeoff between the approximation qual-

ity of the generator loss and the computation time, which is linear in the number

of unrolling steps.
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9.9 GAN Architectures

9.9.1 Progressive GAN

A coarse-to-fine approach for training allows generating images at increasing res-

olutions. Progressive GANs (Karras et al., 2018) begin by training the generator

and discriminator using low-resolution images and incrementally add layers of

higher-resolution images during training. Proceeding from coarse to fine achieves

high-resolution results while maintaining training stability.

9.9.2 Deep Convolutional GAN

Deep convolutional GANs are a type of GAN that use convolutional neural net-

works (CNNs) as the generator and discriminator. In a similar fashion that using

CNNs significantly improves classification accuracy over fully connected neural

networks, using a CNN as the discriminator network and a deconvolution neural

network as the generator, known as a DCGAN (Radford et al., 2015), signif-

icantly improves the quality of the synthesized results over a fully connected

GAN (Goodfellow et al., 2014). Deep convolutional GANs are capable of gener-

ating high-resolution images with realistic textures and have been extended by

methods that improve and stabilize GAN training (Salimans et al., 2016).

9.9.3 Semi-Supervised GAN

Instead of having the discriminator be a binary classifier for real or fake samples,

in a semi-supervised GAN (SGAN) the discriminator is a multi-class classifier

(Salimans et al., 2016; Kumar et al., 2017; Odena et al., 2017; Oliver et al.,

2018). The discriminator outputs the likelihood of a sample to be synthesized

or real, and if the sample is classified as real then the discriminator outputs the

probability of the k classes, estimating to which class the sample belongs. In the

semi-supervised setting (Odena, 2016) the SGAN discriminator receives three

types of inputs rather than two: fake samples synthesized by the generator; real

samples without class labels; and real samples with class labels, thus improving

the generated results for specific classes. Training is improved by having the

SGAN discriminator trained using two loss functions (Salimans et al., 2016)

rather than a single loss function: an unsupervised loss and a supervised loss

function.

9.9.4 Conditional GAN

A conditional GAN (Mirza and Osindero, 2014) models the conditional proba-

bility distribution P (x|y) by training the generator and discriminator on labeled

data. Replacing D(x) with D(x|y) and G(z) with G(z|y) in Equation 9.2:

min
G

max
D

V (G,D) = Ex[logD(x|y)] + Ez[log(1−D(G(z|y)))] (9.24)
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turns a GAN into a conditional GAN. Providing labels allows us to synthesize

samples in a specific class or with a specific attribute, providing a level of control

over synthesis.

9.9.5 Image-to-Image Translation

Image analogies (Hertzmann et al., 2001) provide a framework for synthesizing

images by example. Given a training set of unfiltered and filtered image pairs

A : A′ and a new unfiltered image B, the output is a filtered image B′ such that

the analogy A : A′ :: B : B′ is maintained.

Image-to-image translation also known as Pix2Pix (Isola et al., 2017; Huang

et al., 2018; Wang, Liu, Zhu, Tao, Kautz and Catanzaro, 2018; Liu, Huang,

Mallya, Karras, Aila, Lehtinen and Kautz, 2019; Park et al., 2019) applies this

concept using GANs. An input image is mapped to a synthesized image with

different properties. The loss function is a combination of the conditional GAN

loss with an additional loss term, which is a pixelwise loss that encourages the

generator to match the source image:

min
G

max
D

V (G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))]

+ λEx,y,z[‖y − G(x, z)‖1]
(9.25)

weighted by λ.

9.9.6 Cycle-Consistent GAN

Motivated by style and content separation (Tenenbaum and Freeman, 2000; Drori

et al., 2003a), cycle-consistent GAN (Zhu et al., 2017) learns unpaired image-to-

image translation using GANs without pixelwise correspondence. The training

data are image sets X ∈ A and Y ∈ A′ from two different domains A and A′

without pixelwise correspondence between the images in X and Y . The advan-

tage of this unsupervised approach is that images in correspondence may be

expensive to acquire or may not be available altogether.

Cycle-Consistent GAN (CycleGAN) consists of two generators G(X) = Ŷ and

F(Y ) = X̂ and two discriminators DY and DX . The generator G maps a real

image X to a synthesized sample Ŷ and the discriminator DY compares be-

tween them. The generator F maps a real image Y to a synthesized sample X̂

and the discriminator DX compares between them. CycleGAN maintains two

approximate cycle consistencies. The first cycle consistency F(G(X)) ≈ X ap-

proximately maintains that mapping a real image X to a synthesized image

Ŷ and back is similar to X, and the second cycle consistency G(F(Y )) ≈ Y

approximately maintains that mapping a real image Y to a synthesized image

X̂ and back is similar to Y . Consider learning the translation between English

and Chinese by applying one generator that translates the sentence from En-

glish to Chinese followed by a second generator that translates the result back
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Figure 9.5 CycleGAN for horses and zebras. Generators are shown in green, critics in
red, real images in orange, and fake images in gray.

from Chinese to English, while maintaining that the final result is similar to the

original English sentence, and vice versa. The discriminators make sure that the

generators do not learn the identity function, and synthesize diverse samples.

The overall loss function is defined by (Zhu et al., 2017):

min
G,F

max
DX ,DY

L(G,F ,DX ,DY ) = LGAN(G,DY , X, Y ) + LGAN(F ,DX , Y,X)

+ λLcyc(G,F)
(9.26)

where the cycle-consistency loss is defined by:

Lcyc(G,F) = Ex∼PX
(‖F(G(X))−X‖1) + EY∼PY

(‖G(F(Y ))− Y ‖1) (9.27)

weighted by λ.

For example, consider X to be horse images and Y to be images of zebras.

Clearly, there is no pixelwise correspondence between images of horses and zebras

in the wild. A CycleGAN for horses and zebras (Zhu et al., 2017) is illustrated

in Figure 9.5. One generator maps horses to zebras and the other maps zebras

to horses. One discriminator distinguishes between real and fake horses and the

other distinguishes between real and fake zebras. One cycle maintains that, given

a real horse, a generator synthesizes a fake zebra which the other generator

transforms back to a horse matching the original horse. A second cycle maintains

that, given a real zebra, a generator synthesizes a fake horse which the other

generator transforms back to a zebra matching the original zebra. One critic

learns to distinguish between real and fake horses and another critic learns to

distinguish between real and fake zebras. StarGAN (Choi et al., 2018) extends

CycleGAN to more than two domains.

If the generators G and F were invertible mappings F = G−1 then exact cycle

consistencies would be maintained such that F(G(X)) = Y and G(F(Y )) = X.

This is achieved by modeling each domain using normalizing flows (Rezende and
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Mohamed, 2015), and maintaining exact cycle consistency improves the quality

of the synthesized results (Grover et al., 2020).

9.9.7 Registration GAN

Registration GAN (Kong et al., n.d.) uses a registration network R after the

generator G, treating the misaligned target images as noisy labels and correcting

the result. A correction loss is defined by:

min
G,R

Lcor(G,R) = Ex,ỹ,z[‖y − G(x, z) ◦ R(G(x, z), ỹ)‖1], (9.28)

where ◦ represents resampling and R(G(x, z), ỹ) is a deformation field that dis-

places each pixel. A smoothness loss on the deformation field is defined by:

min
R

Lsmooth(R) = Ex,ỹ,z[‖∇R(G(x, z), ỹ)‖2] (9.29)

and the total loss is the sum of the GAN, correction and smoothness losses:

min
G,R

max
D

L(G,R,D) = LGAN(G,D) + Lcor(G,R) + Lsmooth(R) (9.30)

Registration GAN (RegGAN) outperforms both Pix2Pix on aligned images and

CycleGAN on unpaired images, specifically on medical images where the noise

may be considered as a deformation field.

9.9.8 Self-Attention GAN and BigGAN

Self-attention GAN (Zhang, Goodfellow, Metaxas and Odena, 2019) incorpo-

rates an attention mechanism in both the generator and discriminator networks

to capture long-range spatial dependencies between pixels. Using attention im-

proves the diversity of the synthesized images. Self-attention GAN (SAGAN) is

improved in BigGAN (Brock et al., 2019) by increasing the batch size to im-

prove quality, by using a truncated normal distribution for z during training

which trades off diversity for quality, and by incorporating z into each layer of

the generator for further improving quality.

9.9.9 Composition and Control with GANs

Generative adversarial networks are used for synthesis by sampling a latent vari-

able z passed to generator G to generate an output x. Until recently, control-

ling the output synthesized by GANs, for example the pose, illumination and

composition of multiple objects in a scene, has been challenging. Recent work

(Niemeyer and Geiger, 2021) adds control over the synthesized scene by incorpo-

rating 3D scene composition into the model. During the forward pass, individual

shape and appearance variables for each object and background are sampled, for

example, sampling the pose for each object, then applying the transformation,

and rendering the scene. During training, objects and their poses are randomly

sampled.
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9.9.10 Instance Conditioned GAN

Instance conditioned GAN (Casanova et al., 2021) learns multiple local distri-

butions defined by clusters of data points along with their nearest neighbors.

Given an unlabeled dataset of points x(i), their nearest neighbors N (i) are de-

fined based on the cosine similarity of a set of features f(x(i)). A discriminator

D distinguishes between real neighbors x(n) sampled uniformly from N (i) and

generated neighbors. A generator G synthesizes samples from the distribution

p(x|f(x(i))) given Gaussian noise z. The adversarial objective is then defined by:

min
G

max
D

Ex(i)∼Pdata,x(n)∼U(N (i))[logD(x(n), f(x(i)))]

+Ex(i)∼Pdata,z∼Pz
[log(1−D(G(z, f(x(i))), f(x(i))))]

(9.31)

During training, all data points are used for conditioning the model. The dis-

criminator and generator are conditioned on instance features, and therefore by

changing instances the model transfers to unseen datasets. Given labels, Equa-

tion 9.31 may be extended to be conditioned on classes. In this case the discrimi-

nator and generator are conditioned on class labels and the generator synthesizes

samples from the distribution p(x|f(x(i)), y(j)). Instance conditioned GAN (IC-

GAN) outperforms traditional GANs and conditional GANs, and the trained

models transfer well to new unseen datasets without retraining.

9.10 Evaluation

The inception score (IS) and Frechet inception distance (FID) measure the qual-

ity of synthesized examples using pre-trained neural network classifiers. The

geometry score (Khrulkov and Oseledets, 2018) measures the quality of synthe-

sized examples by comparing the manifold of the synthesized samples with the

manifold of the real data. Recent evaluation measures aim to capture both the

quality and diversity of synthesized results.

9.10.1 Inception Score

The IS (Salimans et al., 2016) automatically evaluates the quality of images syn-

thesized by the generator by using the pre-trained Inception v3 model (Szegedy

et al., 2016) for classification. The probabilities of many synthesized images be-

longing to each class are used to compute the score based on the conditional

label distribution p(y|x) and the marginal label distribution p(y):

IS(G) = exp(Ex∼pG
[DKL(p(y|x)||p(y))] (9.32)

A higher IS is better, which corresponds to a larger KL divergence between the

distributions.
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9.10.2 Frechet Inception Distance

The FID (Heusel et al., 2017) is also based on the Inception v3 modally. The

FID uses the feature vectors of the last layer for real and synthesized images to

generate multivariate Gaussians that model the real and synthesized distribu-

tions. The FID is computed as the difference between these Gaussians measured

using the Wasserstein-2 distance by:

FID = ‖μreal − μgenerated‖2 + tr(Σreal +Σgenerated − 2(ΣrealΣgenerated)
1
2 ) (9.33)

A lower FID is better, which corresponds to similar real and synthesized distri-

butions.

9.11 Applications

9.11.1 Super Resolution and Restoration

Super-resolution by example (Freeman et al., 2002) increases the resolution of an

image given corresponding low-resolution and high-resolution training example

pairs. Super Resolution GAN (Ledig et al., 2017) uses a GAN framework for

super-resolution. SinGAN (Shaham et al., 2019) uses the self-similarity of image

patches within an image for synthesizing versions of an image. Building upon

SinGAN, KerGAN (Bell-Kligler et al., 2019) performs blind super resolution

without any training examples by utilizing the self-similarity of image patches

across scales to learn an image-specific down-sampling kernel used for super-

resolution. Generative Facial Prior (GFP) GAN (Wang, Li, Zhang and Shan,

2021) performs blind face restoration using U-Nets and a pre-trained face GAN

with excellent results.

9.11.2 Style Synthesis

As described, CycleGAN (Zhu et al., 2017) has been used for style synthesis.

StyleGAN (Karras et al., 2019) combines progressive GANs (Karras et al., 2018)

with style transfer (Huang and Belongie, 2017) based on CNNs with adaptive

normalization layers to disentangle the latent factors controlling image style syn-

thesis. Hyper-LifelongGAN (Zhai et al., 2021) provides a lifelong learning frame-

work for image-conditioned generation. HistoGAN (Afifi et al., 2021) learns to

change image colors based on histogram features. ComoGAN (Pizzati et al.,

2021) learns non-linear continuous image translation with unsupervised target

data using physics-inspired models.

9.11.3 Image Completion

Image completion (Drori et al., 2003b) fills in missing regions of an image. Gen-

erative adversarial networks have been used for image completion (Pathak et al.,
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2016; Iizuka et al., 2017; Yu et al., 2019; Liu, Wan, Huang, Song, Han and Liao,

2021), face completion (Li, Liu, Yang and Yang, 2017; Yeh et al., 2017), and

fashion image completion (Han et al., 2019).

9.11.4 De-raining

Conditional GANs have been applied to realistically remove rain streaks from

images with rain (Zhang, Sindagi and Patel, 2019).

9.11.5 Map Synthesis

Generative adversarial networks have been applied to synthesize texture and

high-resolution maps without any noticeable artifacts (Frühstück et al., 2019).

9.11.6 Pose Synthesis

Generative adversarial networks have been used for synthesizing humans in ar-

bitrary target poses (Ma et al., 2017).

9.11.7 Face Editing

Generative adversarial networks have been applied for synthesizing faces with

varying facial expressions, gender, hair styles and colors, glasses (Liu and Tuzel,

2016; Brock et al., 2017), and ages (Antipov et al., 2017; Zhang, Song and Qi,

2017). PairedCycleGAN (Chang et al., 2018) extends CycleGAN to style control

for the application and removal of makeup. GANmut (d’Apolito et al., 2021)

learns an interpretable and expressive conditional space of facial emotions rather

than conditioning on handcrafted labels. AnycostGANs (Lin et al., 2021) uses

adaptive sampling and multi-resolution to achieve interactive face synthesis. A

single face image may be sufficient for generating a normalized 3D avatar of a

person’s head (Luo et al., 2021).

9.11.8 Training Data Generation

Generative adversarial networks have been used for learning to synthesize pho-

torealistic training examples from synthetic eye and hand images (Shrivastava

et al., 2017).

9.11.9 Text-to-Image Synthesis

StackGAN (Zhang, Xu, Li, Zhang, Wang, Huang and Metaxas, 2017, 2018) and

AttentionalGAN (Xu et al., 2018) receive text as input and synthesize an image

described by the text, which works well for specific classes of images. Text-guided

diverse image generation and manipulation using a GAN (Xia et al., 2021) maps
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text and sketches in the latent space of a StyleGAN for controlling generated

face images by text.

9.11.10 Medical Imaging

Generative adversarial networks have been applied to a wide range of medical

image analysis tasks, including classification, detection, segmentation, de-noising,

and reconstruction (Kazeminia et al., 2020). Specifically, CycleGAN has been

applied for magnetic resonance to computed tomography (MR-to-CT) synthesis

(Wolterink et al., 2017).

9.11.11 Video Synthesis

Generative adversarial networks have been applied for video prediction (Von-

drick et al., 2016) using spatio-temporal CNNs that separate moving foreground

objects from static backgrounds. Image-to-image transfer has been extended to

video-to-video transfer, learning a mapping between a segmentation map and

real street video with photorealistic results (Wang, Liu, Zhu, Liu, Tao, Kautz

and Catanzaro, 2018). Video portraits (Kim, Carrido, Tewari, Xu, Thies, Niess-

ner, Pérez, Richardt, Zollhöfer and Theobalt, 2018) use GANs to transfer head

position and rotation, face expression, eye gaze, and blinking from one person to

a portrait video of another person, reanimating a person’s face. Self-supervised

video GANs (Hyun et al., 2021) represent video as a composition of appearance

and motions, synthesizing video with temporal coherence.

9.11.12 Motion Retargeting

CycleGAN has been applied to retarget a given motion to a new cartoon char-

acter (Villegas et al., 2018). Image transfer has been extended to video transfer,

retargeting the body motion of one person to a new person, achieving videore-

alistic results (Chan et al., 2019).

9.11.13 3D Synthesis

3D-GANs (Wu et al., 2016) use GANs to synthesize high-quality 3D objects

and learn an object representation useful for interpolating between objects and

3D object recognition. Roof-GAN (Qian et al., 2021) learns to generate roof

geometry and relations for residential housing. ShapeInversion (Zhang et al.,

2021) uses a GAN pre-trained on complete shapes to search for a vector in the

latent space that results in a completed shape that reconstructs the partial input.

This results in diverse 3D shape completions without using training pairs.
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9.11.14 Graph Synthesis

Graphs are the underlying representation of networks with many applications:

social networks of friends, the internet of web pages, cellular communication net-

works of users, financial transaction networks of bank clients, protein-to-protein

interaction networks, or neural networks of brains. NetGAN (Bojchevski et al.,

2018) synthesizes graphs by learning the distribution of random walks of a given

graph dataset, which can then be used for link prediction.

9.11.15 Autonomous Vehicles

Generative adversarial networks have been used in reinforcement learning to

learn human driving behaviors from human driving demonstrations (Li, Song

and Ermon, 2017) by imitation learning in an unsupervised fashion. SocialGAN

combines sequence models and GANs to predict plausible human motion trajec-

tories (Gupta et al., 2018) for accurate prediction and collision avoidance.

9.11.16 Text-to-Speech Synthesis

Generative adversarial networks have been applied to synthesize speech from

text, achieving results that are perceptually close to natural speech (Yang, Xie,

Chen, Lou, Zhu, Huang and Li, 2017). DriveGAN (Kim et al., 2021) learns to

simulate a controllable and dynamic driving environment from video.

9.11.17 Voice Conversion

CycleGAN has been applied to voice conversion (Fang et al., 2018; Kaneko et al.,

2019) by modifying a speech signal of one speaker to match that of another

speaker.

9.11.18 Music Synthesis

MuseGAN generates long, polyphonic music for multiple instruments (Dong

et al., 2018), including pop song phrases with bass, drums, guitar, and piano,

taking into account chords, style, melody, and groove. The synthesized music is

coherent, with pleasant harmony and unified rhythm. GANSynth (Engel et al.,

2019) uses a progressive GAN to synthesize an audio sequence from a latent

vector, producing coherent results.

9.11.19 Protein Design

Protein structure determines function; therefore, predicting protein structure and

function is important in protein design for drug discovery. Generative adversarial

networks have been applied for synthesizing distance matrices between protein

atoms (Anand and Huang, 2018) to aid in protein design.
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Table 9.1 Summary of discriminator and generator loss functions for different GANs.

GAN Discriminator loss (maximize) Generator loss (minimize)

Original Ex[logD(x)] + Ez[log(1−D(G(z)))] Ez[log(1−D(G(z)))]

Least squares Ex[(D(x)− 1)2]− Ez[D(G(z))2] Ez[(D(G(z))− 1)2]

Wasserstein Ex[D(x)]− Ez[D(G(z))] -Ez[D(G(z))]

9.11.20 Natural Language Synthesis

Generative adversarial networks have been applied to natural language. The

generator G generates language and the discriminator D distinguishes between

real text and generated text (Lin, Li, He, Zhang and Sun, 2017; Yu et al., 2017;

Fedus et al., 2018; Guo et al., 2018). Computing derivatives through discrete text

tokens is a challenge (Caccia et al., 2018), and there is often a trade-off between

the quality and the diversity of the generated text.

9.11.21 Cryptography

CycleGAN has been applied to infer simple ciphers given unpaired examples

of ciphertext and plaintext (Gomez et al., 2018). The texts were encoded using

simple shift or Vigenere ciphers and decoded using CycleGAN in a similar fashion

to language translation.

9.12 Software Libraries, Benchmarks, and Visualization

TF-GAN (Shor et al., 2020) is a library for training and evaluating GANs in

TensorFlow. TorchGAN (PyTorch, 2021) is a framework for efficient training of

GANs based on PyTorch. Compare GAN (Google, 2020) is a library for com-

paring between GAN architectures, loss functions, and evaluation metrics. GAN

Lab (Kahng et al., 2018) is an interactive visualization of GANs available online.

9.13 Summary

This chapter introduces GAN theory, practice, and applications. We present the

most significant GAN architectures, loss functions, training algorithms, and ap-

plications. Table 9.1 summarizes the discriminator and generator loss functions

for different GANs. The roles of the generator and discriminator and the ad-

vantages and limitations of different loss functions are important to understand.

Issues include mode collapse and vanishing gradients, and various solutions are

available. GANs have a broad range of applications with code libraries and bench-

marks in the field.
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10.1 Introduction

This chapter begins with a review of variational inference (VI) as a fast approx-

imation alternative to Markov chain Monte Carlo (MCMC) methods, solving

an optimization problem for approximating the posterior. Variational inference

using both the mode-seeking reverse Kullback–Leibler (RKL) divergence and

mass-covering forward Kullback–Leibler (FKL) divergence are presented. Re-

verse KL is covered in detail since it is more reliable and stable than FKL in

high dimensions. Variational inference is scaled to stochastic variational infer-

ence and generalized to black-box variational inference (BBVI). Amortized VI

leads to the variational autoencoder (VAE) framework, which is introduced using

deep neural networks and graphical models and used for learning representations

and generative modeling. Finally, we explore generative flows, the latent space

manifold, and Riemannian geometry of generative models.

10.2 Variational Inference

We begin with observed data x, continuous or discrete, and suppose that the

process generating the data involved hidden latent variables z. For example, x

may be an image of a face and z a hidden vector describing latent variables

such as pose, illumination, gender, or emotion. A probabilistic model is a joint

density p(z, x) of the hidden variables z and the observed variables x. Our goal

is to estimate the posterior p(z|x) to explain the observed variables x by the

hidden variables z, for example, answering the question of what are the hidden

latent variables z for a given image x. Inference about the hidden variables is

given by the posterior conditional distribution p(z|x) of hidden variables, given

observations. By definition:

p(z, x) = p(z|x)p(x) = p(x|z)p(z) = p(x, z) (10.1)

where p(z, x) is the joint density, p(z|x) the posterior, p(x) the evidence or

marginal density, p(z) the prior density, and p(x|z) the likelihood function. We

may extend p(x|z)p(z) to multiple layers by:

p(x|z1)p(z1|z2), . . . , p(z |z )p(z ) (10.2)
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by using deep generative models. For now we will focus on a single layer p(x|z)p(z).
Rearranging terms, we get Bayes rule:

p(z|x) = p(x|z)p(z)
p(x)

(10.3)

For most models the denominator p(x) is a high-dimensional intractable inte-

gral that requires integrating over an exponential number of terms for z:

p(x) =

∫

p(x|z)p(z)dz (10.4)

Therefore, instead of computing p(z|x) the key insight of VI (Jordan et al.,

1999; Opper and Saad, 2001; Bishop, 2006; Wainwright and Jordan, 2008; Blei

et al., 2017; Kim, Wiseman and Rush, 2018; Zhang, Butepage, Kjellstrom and

Mandt, 2018) is to approximate the posterior by a variational distribution qφ(z)

from a family of distributions Q, defined by variational parameters φ such that

qφ(z) ∈ Q. A choice for Q is the exponential family of distributions. In summary,

we choose a parameterized family of distributions Q and find the distribution

qφ⋆(z) ∈ Q which is closest to p(z|x). Once found, we use this approximation

qφ⋆(z) instead of the true posterior p(z|x), as illustrated in the left side of Figure

10.1.

The posterior p(z|x) is often intractable to compute analytically. For example,

if z is a vector of length d, then p(z|x) is a d × d matrix, and the posterior is

a function of the parameters of the model p(z|x, θ). In machine learning, the

parameters θ are often learned from the data x using a learning algorithm. The

goal of inference is to estimate the posterior p(z|x) from the data x using a com-

putationally tractable approximation q(z|x). The approximation q(z|x) is called
the variational distribution. The variational distribution q(z|x) is defined as the

solution to a variational inference problem. The variational inference problem is

a mathematical optimization problem of finding the parameters of q(z|x) that

minimize the lower bound of a divergence D between the variational distribution

q(z|x) and the posterior p(z|x).
Compared with this formulation, methods such as mean-field variational in-

ference (MFVI) (Opper and Saad, 2001; Giordano et al., 2018) and MCMC

sampling have several shortcomings. The mean-field method (Parisi, 1988) as-

sumes a full factorization of variables, which is inaccurate. Stochastic variational

inference scales MFVI to large datasets (Hoffman et al., 2013). Markov chain

Monte Carlo sampling methods (Brooks et al., 2011), such as the Metropolis–

Hastings algorithm, may not be scalable to very large datasets and may require

manually specifying a proposal distribution.

The f -divergence from a probability distribution q(z) to a probability distri-

bution p(z) is defined by:

Df (q(z)||p(z)) =
∫

f

(

q(z)

p(z)

)

p(z)dz = Ep

[

f

(

q(z)

p(z)

)]

(10.5)

where f is a convex function with f(1) = 0. For f(t) = t log(t) we get the
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Figure 10.1 Variational inference using RKL (left) and FKL (right) between
distributions p and q. In RKL we optimize an approximation qφ⋆(z) ∈ Q closest to
the posterior p(z|x).

KL divergence. The KL is non-negative DKL(p||q) ≥ 0 and is not symmetric

DKL(q||p) �= DKL(p||q), hence the KL is not a distance.

The FKL divergence between distributions p and q is defined by:

DKL(p(x)||q(x)) =
∫

p(x) log
p(x)

q(x)
dx (10.6)

whereas the RKL divergence is defined by:

DKL(q(x)||p(x)) =
∫

q(x) log
q(x)

p(x)
dx (10.7)

The RKL divergence is mode-seeking, whereas the FKL divergence is mass-

covering (Jerfel et al., 2021; Zhang et al., 2022). Therefore the RKL is easier

to optimize and will be described in detail. Other divergences may be used; for

example, the KL divergence is the special case of the α-divergence (Li and Turner,

2016) with α = 1, and the special case of the Bregman divergence generated by

the entropy function.

10.2.1 Reverse KL

Making the choice of an exponential family and RKL divergence, we minimize

the KL divergence between q(z) and p(z|x):

minimize
φ

DKL(qφ(z)||p(z|x)) = minimize
φ

∫

qφ(z) log
qφ(z)

p(z|x) (10.8)

Therefore, when qφ(z) is close to zero then log
qφ(z)
p(z|x) does not contribute to the

integral, ignoring p(z|x). When qφ(z) is large and p(z|x) is close to zero there is

significant contribution to the integral.

We find the approximate posterior:

qφ⋆(z) = argmin
qφ(z)

DKL(qφ(z)||p(z|x)) (10.9)
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as illustrated on the left side of Figure 10.1, where:

DKL(qφ(z)||p(z|x)) = Eqφ(z)[log qφ(z)]− Eqφ(z)[log p(z|x)] (10.10)

therefore, plugging the RKL into Equation 10.9 we get:

qφ⋆(z) = argmin
qφ(z)

Eqφ(z)[log qφ(z)]− Eqφ(z)[log p(z|x)] (10.11)

and replacing minimization by maximization yields:

qφ⋆(z) = argmax
qφ(z)

Eqφ(z)[log p(z|x)] + Eqφ(z)[− log qφ(z)] (10.12)

which promotes that wherever qφ has high probability, p(z|x) also has high prob-

ability, known as mode-seeking.

Specifically, using the definition of the RKL divergence in Equation 10.7 for

the variational distribution and posterior we get:

DKL(q(z)||p(z|x)) =
∫

q(z) log
q(z)

p(z|x)dz (10.13)

Unfortunately, the denominator contains the posterior p(z|x), which is the term

that we would like to approximate. So how can we get close to the posterior

without knowing the posterior? By using Bayes rule, replacing the posterior in

Equation 10.13 using Equation 10.1, we get:
∫

q(z) log
q(z)

p(z|x)dz =

∫

q(z) log
q(z)p(x)

p(z, x)
dz (10.14)

Separating the log p(x) term and replacing the log of the ratio with a difference

yields:
∫

q(z) log
q(z)p(x)

p(z, x)
dz = log p(x)−

∫

q(z) log
p(z, x)

q(z)
dz (10.15)

In summary, minimizing the reverse KL divergence between p(z|x) and q(z) is

equivalent to minimizing the difference:

log p(x)−
∫

q(z) log
p(z, x)

q(z)
dz ≥ 0 (10.16)

which is non-negative since the KL divergence is non-negative. Rearranging terms

we get:

log p(x) ≥
∫

q(z) log
p(z, x)

q(z)
dz := L (10.17)

The term on the right, denoted by L, is known as the evidence lower bound

(ELBO). Therefore, minimizing the KL divergence is equivalent to maximizing

the ELBO. We have turned the problem of approximating the posterior p(z|x)
into an optimization problem of maximizing the ELBO, which consists of two

terms:

L = Eqφ(z)[log p(x, z)]− E [log q (z)] (10.18)
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The term on the left is the expected log likelihood, and the term on the right

is the negative entropy. Therefore, when optimizing the ELBO, there is a trade-

off between these two terms. The first term places mass on the maximum a-

posteriori (MAP) estimate, whereas the second term encourages diffusion, or

spreading the variational distribution. In variational inference we maximize the

ELBO in Equation 10.18 to find qφ⋆(z) ∈ Q closest to the posterior p(z|x).

10.2.2 Score Gradient

Now that our objective is to maximize the ELBO, we turn to practical optimiza-

tion methods. The ELBO is not convex, so we can hope to find a local maximum.

We would like to scale up to large data x with many hidden variables z. A practi-

cal optimization method which scales to large data is stochastic gradient descent

(Robbins and Monro, 1951; Bottou, 2010). Gradient descent optimization is a

first-order method which requires computing the gradient. Therefore, our prob-

lem is computing the gradient of the ELBO:

∇φL = ∇Eqφ(z)[log p(x, z)− log qφ(z)] (10.19)

We would like to compute the gradients of the expectations ∇φEqφ(z)[fφ(z)] of

a cost function fφ(z) = log p(x, z)− log qφ(z) by expanding the gradient as:

∇φEqφ(z)[fφ(z)] = ∇φ

∫

qφ(z)fφ(z)dz (10.20)

By using the chain rule this expands to:

∇φ

∫

qφ(z)fφ(z)dz =

∫

(∇φqφ(z))fφ(z) + qφ(z)(∇φfφ(z))dz (10.21)

We cannot compute the expectation with respect to qφ(z), which involves the

unknown term ∇φqφ(z), and therefore we will take Monte Carlo estimates of the

gradient by sampling from q and use the score function estimator as described

next.

Score Function
The score function is the derivative of the log-likelihood function:

∇φ log qφ(z) =
∇φqφ(z)

qφ(z)
(10.22)

Score Function Estimator
Using Equation 10.20 and multiplying by the identity we get:

∇φ

∫

qφ(z)fφ(z)dz =

∫

qφ(z)

qφ(z)
∇φqφ(z)fφ(z)dz (10.23)

and plugging in Equation 10.22 we derive:
∫

qφ(z)

qφ(z)
∇φqφ(z)fφ(z)dz =

∫

qφ(z)∇φ log qφ(z)fφ(z)dz (10.24)
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which equals:
∫

qφ(z)∇φ log qφ(z)fφ(z)dz = Eqφ(z)[fφ(z)∇φ log qφ(z)] (10.25)

In summary, by using the score function, we have passed the gradient through

the expectation:

∇φEqφ(z)[fφ(z)] = Eqφ(z)[fφ(z)∇φ log qφ(z)] (10.26)

Score Gradient
The gradient of the ELBO with respect to the variational distribution ∇φL is

computed using Equation 10.26 as:

∇φL = Eqφ(z)[(log p(x, z)− log qφ(z))∇φ log qφ(z)] (10.27)

Now that the gradient is inside the expectation we can evaluate using Monte

Carlo sampling. For stochastic gradient descent we average over samples zi from

qφ(z) to get:

∇φL =
1

k

k
∑

i=1

[(log p(x, zi)− log qφ(zi))∇φ log qφ(zi)] (10.28)

where ∇φ log qφ(zi) is the score function. The score gradient works for both

discrete and continuous models and a large family of variational distributions

and is therefore widely applicable (Ranganath et al., 2014). The problem with

the score function gradient is that the noisy gradients have a large variance. For

example, if we use Monte Carlo sampling for estimating a mean and there is high

variance, we would require many samples for a good estimate of the mean.

10.2.3 Reparameterization Gradient

Distributions can be represented by transformations of other distributions. We

therefore express the variational distribution z ∼ qφ(z) = N (μ, σ) by a transfor-

mation:

z = g(ǫ, φ) (10.29)

where ǫ ∼ s(ǫ) and get an equivalent way of describing the same distribution:

z ∼ qφ(z) (10.30)

For example, instead of z ∼ qφ(z) = N (μ, σ) we use:

z = μ+ σ ⊙ ǫ (10.31)

where ǫ ∼ N (0, 1) to get the same distribution:

z ∼ N (μ, σ) (10.32)

Although these are two different ways of describing the same distribution, the

advantages of this transformation are that we can (1) express the gradient of the



180 10 Variational Autoencoders

expectation; (2) achieve a lower variance than the score function estimator; and

(3) differentiate through the latent variable z to optimize by backpropagation.

We reparameterize ∇φEqφ(z)[fφ(z)], and by a change of variables Equation

10.20 becomes:

∇φEqφ(z)[fφ(z)] = ∇φ

∫

s(ǫ)
dǫ

dz
f(g(ǫ, φ))g′(ǫ, φ)dǫ (10.33)

and:

∇φ

∫

s(ǫ)
dǫ

dz
f(g(ǫ, φ))g′(ǫ, φ)dǫ = ∇φEs(ǫ)[f(g(φ, ǫ))] = Es(ǫ)[∇φf(g(φ, ǫ))]

(10.34)

where s(ǫ) is a fixed distribution independent of φ, passing the gradient through

the expectation:

∇φEqφ(z)[fφ(z)] = Es(ǫ)[∇φf(g(φ, ǫ))] (10.35)

Since the gradient is inside the expectation, we can use Monte Carlo sampling to

estimate Es(ǫ)[∇φf(g(φ, ǫ))]. The reparameterization method given by Equation

10.35 has a lower variance compared with the score function estimator given in

Equation 10.26.

In the case of the ELBO L, the reparameterized gradient (Kingma andWelling,

2014; Rezende et al., 2014) is given by:

∇φL = Es(ǫ)[∇φ[log p(x, z)− log qφ(z)]∇φg(ǫ, φ)] (10.36)

and rewriting the expectation:

∇φL =
1

k

k
∑

i=1

∇φ[log p(x, g(ǫi, φ))− log qφ(g(ǫi, φ))] (10.37)

provided the entropy term has an analytic derivation and log p(x, z) and log q(z)

are differentiable with respect to z. Similarly, the reparameterization gradient in

Equation 10.36 has a lower variance than the score gradient in Equation 10.27.

In addition, we can use auto-differentiation for computing the gradient and reuse

different transformations (Kucukelbir et al., 2017). The gradient variance is fur-

ther reduced by changing the computation graph in automatic differentiation

(Roeder et al., 2017). However, a limitation of the reparameterization gradi-

ent is that it requires a differentiable model, works only for continuous models

(Figurnov et al., 2018) and is computationally more expensive.

10.2.4 Forward KL

The FKL divergence minimizes the KL between p(z|x) and qφ(z):

minimize
φ

DKL(p(z|x)||qφ(z)) = minimize
φ

∫

p(z|x) log p(z|x)
q (z)

dz (10.38)
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If p(z|x) is close to zero then log p(z|x)
qφ(z)

does not contribute to the integral and

therefore there is no penalty for a large qφ(z). We find:

qφ⋆(z) = argmin
qφ(z)

DKL (p(z|x)||qφ(z)) (10.39)

as illustrated on the right side of Figure 10.1, where:

DKL(p(z|x)||qφ(z)) = Ep(z|x)[log p(z|x)]− Ep(z|x)[log qφ(z)] (10.40)

Since the left term is independent of the parameter φ it may be dropped when

minimizing for qφ, and turning the objective into maximization results in:

qφ⋆(z) = argmin
qφ(z)

(

−Ep(z|x)[log qφ(z)]
)

= argmax
qφ(z)

Ep(z|x)[log qφ(z)] (10.41)

which promotes that wherever p(z|x) has high probability qφ also has high proba-

bility, also known as mass-covering or mean-seeking, which results in qφ covering

p(z|x).

10.3 Variational Autoencoder

Instead of optimizing a separate parameter for each example, amortized varia-

tional inference (AVI) approximates the posterior across all examples together

(Kingma and Welling, 2014; Rezende et al., 2014). Meta-AVI goes a step further

and approximates the posterior across models (Choi et al., 2019). Next, we give

a formulation of autoencoders, which motivates the AVI algorithm of VAEs.

10.3.1 Autoencoder

As shown in Figure 10.2, an autoencoder is a neural network that performs non-

linear principle component analysis (PCA) (Hinton and Salakhutdinov, 2006;

Efron and Hastie, 2016). Non-linear PCA extracts useful features from unlabeled

data by minimizing:

minimize
W 1,W 2

m
∑

i=1

‖xi − (W 2)T f((W 1)Txi)‖22 (10.42)

where for single-layer networks W 1 and W 2 are matrices that are the network’s

parameters and f is a pointwise non-linear function. An autoencoder is composed

of two neural networks. The first maps an input x by matrix multiplication

(W 1)T and a non-linearity to a low-dimensional variable z, which is a bottleneck,

and the second reconstructs the input as x̃ using (W 2)T . When f is the identity

this is equivalent to PCA.

The goal of variational inference is to find a distribution q which approxi-

mates the posterior p(z|x), and a distribution p(x) which represents the data

well. Motivated by autoencoders, we represent q and p using back-to-back neu-

ral networks. An encoder network represents q and a decoder network represents
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Figure 10.2 Autoencoder. Input x is passed through a low-dimensional bottleneck z

and reconstructed to form x̃, minimizing a loss between the input and output. The
parameters W 1 of the encoder and W 2 of the decoder are optimized end-to-end.

p. These neural networks are non-linear functions F which are a composition of

functions F (x) = f(f(. . . f(x))), where each individual function f has a linear

and non-linear component, and the function F is optimized given a large dataset

by stochastic gradient descent (SGD).

10.3.2 Variational Autoencoder

The ELBO is a lower bound on the log-likelihood of the data x given the latent

variable z. It is a lower bound because it is not possible to compute the exact

log-likelihood of the data x given the latent variable z. We will find the optimal

parameters θ∗ of the encoder and decoder by maximizing the ELBO. The ELBO

can be used to train a generative model and is maximized by SGD. This means

that the parameters of the encoder and decoder are updated in each iteration by

taking a step in the direction of the gradient of the ELBO with a small learning

rate. The ELBO may also be used to train a discriminative model.

The ELBO as defined in Equation 10.17 can be rewritten as:

L =

∫

q(z) log p(x|z)dz −
∫

q(z) log
p(z)

q(z)
dz (10.43)

which is the lower bound consisting of two terms:

L = Eq(z)[log p(x|z)]−DKL(q(z)||p(z)) (10.44)

The term log p(x|z), on the left, is the log-likelihood of the observed data x
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Figure 10.3 Variational autoencoder. The input x is passed through a low-dimensional
bottleneck z and reconstructed to form x̃, minimizing a loss between the input and
output. The parameters φ and θ of the encoder qφ and decoder pθ deep neural
networks are optimized end-to-end by backpropagation.

given the sampled latent variable z. This term measures how well the samples

from q(z) explain the data x. The goal of this term is to reconstruct x from z

and therefore is called the reconstruction error, representing a decoder which is

implemented by a deep neural network. This term measures the likelihood of

beginning with data x, encoded by a latent variable z, and decoding it back to

the original data x.

The second term, on the right, consists of sampling z ∼ q(z|x), representing an

encoder which is also implemented by a deep neural network. This term ensures

that the explanation of the data does not deviate from the prior beliefs p(z) and

is called the regularization term, defined by the KL divergence between q and

the prior p(z). This term measures the closeness between the encoder and prior.

The objective function in Equation 10.44 is analogous to the formulation of

autoencoders, and therefore gives rise to the VAE. The VAE is a deep learning

algorithm, rather than a model, which is used for learning latent representations.

The learned representations can be used for applications such as synthesizing ex-

amples or interpolation between samples, of different modalities such as images,

video, audio, geometry and text.

The VAE algorithm is defined by two back-to-back neural networks as illus-

trated in Figure 10.3. The first is an encoder neural network which infers a hidden

variable z from an observation x. The second is a decoder neural network which

reconstructs an observation x̃ from a hidden variable z. The encoder qφ and de-

coder pθ are trained end-to-end, optimizing for both the encoder parameters φ

and decoder parameters θ by backpropagation.

If we assume q(z|x) and p(x|z) are normally distributed then q is represented

by:

q(z|x) = N (μ(x), σ(x)⊙ I) (10.45)

for deterministic functions μ(x) and σ(x), and p is represented by:

p(x|z) = N (μ(z), σ(z)⊙ I) (10.46)

and

p(z) = N (0, I) (10.47)

The variational predictive natural gradient (Tang and Ranganath, 2019) rescales
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Figure 10.4 Variational encoder. Rather than sampling directly z ∼ N (μ, σ) in the
latent space, reparameterization allows for backpropagation through the latent
variable z = μ+ σ ⊙ ǫ, which is a sum of the mean μ and covariance. The covariance
σ is multiplied by noise ǫ ∼ N (0, I) sampled from a normal distribution.

the gradient to capture the curvature of variational inference. The correlated

VAE (Tang, Liang, Jebara and Ruozzi, 2019) extends the VAE to learn pairwise

variational distribution estimations which capture the correlation between data

points.

In practice, very good synthesis results for different modalities are achieved

using a vector quantized variational autoencoder (VQ-VAE; (van den Oord et al.,

2017)) which learns a discrete latent representation. Using an autoregressive de-

coder or prior with VQ-VAE (De Fauw et al., 2019; Razavi et al., 2019) generates

photorealistic high-resolution images (Ravuri and Vinyals, n.d.).

10.4 Generative Flows

This section describes transformations of simple posterior distribution approxi-

mations to complex distributions by normalizing flows (Rezende and Mohamed,

2015). We would like to improve our variational approximation qφ(z) to the pos-

terior p(z|x). An approach for achieving this goal is to transform a simple density,

such as a Gaussian, to a complex density using a sequence of invertible transfor-

mations, also known as normalizing flows (Rezende and Mohamed, 2015; Dinh

et al., 2017; Kingma and Dhariwal, 2018). Instead of parameterizing a simple

distribution directly, a change of variables allows us to define a complex distri-

bution by warping q(z) using an invertible function f . Given a random variable
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z ∼ qφ(z) the log density of x = f(z) is:

log p(x) = log p(z)− log det
∣

∣

∣

∂f(z)
∂z

∣

∣

∣
(10.48)

A composition of multiple invertible functions results in a sequence of transfor-

mations, called normalizing flows. These transformations may be implemented by

neural networks, performing end-to-end optimization of the network parameters.

For example, for a planar flow family of transformations:

f(z) = z + uh(wT z + b) (10.49)

where h is a smooth differentiable non-linear function, and the log-det Jacobian

is computed by:

ψ(z) = h′(wT z + b)w (10.50)

and
∣

∣

∂f
∂z

∣

∣ =
∣

∣I + uTψ(z)
∣

∣ (10.51)

If z is a continuous random variable z(t) depending on time t with distribu-

tion p(z(t)) then for the differential equation dz
dt

= f(z(t), t) the change in log

probability is:

∂ log p(z(t))

∂t
= −tr

(

∂f
z(t)

)

(10.52)

and the change in log density is:

log p(z(t1)) = log p(z(t0))−
∫ t1

t0

tr
(

∂f
z(t)

)

(10.53)

also known as continuous normal flows (Chen, Rubanova, Bettencourt and Du-

venaud, 2018; Grathwohl et al., 2019).

For the planar flow family of transformations:

dz(t)

dt
= uh(wT z(y) + b) (10.54)

and
log p(z(t))

∂t
= −uT ∂h

∂z(t)
(10.55)

such that given p(z(0)), p(z(t)) is sampled and the density evaluated by solving

an ordinary differential equation (Chen, Rubanova, Bettencourt and Duvenaud,

2018).

Generative flows have been extended to equivariant normalizing flows (Garcia

et al., n.d.), which are normalizing flows that are equivariant to Euclidean sym-

metries and therefore perform well on particle systems and molecules. Smooth

normalizing flows (Köhler et al., n.d.) incorporate forces into normalizing flows

and yield smooth functions. These are useful properties for modeling molecu-

lar simulations such as simulations of protein backbones represented by torsion

angles.
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10.5 Denoising Diffusion Probabilistic Model

A denoising diffusion probabilistic model (DDPM) (Sohl-Dickstein et al., 2015;

Ho et al., 2020; Dhariwal and Nichol, 2021; Nichol and Dhariwal, 2021), itera-

tively adds noise to a signal and then reverses the noising process by denoising

to generate signals from noise. A DDPM forms a parameterized Markov chain

and is trained using variational inference. DDPMs synthesize high-quality images

and outperform other generative models (Dhariwal and Nichol, 2021).

10.5.1 Forward Noising Process

Starting with points from a distribution x0 ∼ q(x0) we iteratively add Gaussian

noise to generate a sequence (x1, . . . , xT ) consisting of xt for t = 1, . . . , T . The

last element in the sequence, xT , is approximately isotropic Gaussian noise. The

sequence forms a Markov process such that:

q(xt|xt−1) = N (
√

1− βtxt−1, βtI) (10.56)

where βt ∈ (0, 1) is the variance of Gaussian noise. An element in this Markov

process may be generated directly from the first element x0 by:

q(xt|x0) = N (
√

α̂tx0, (1− α̂t)I) (10.57)

where αt = 1− βt and α̂t =
∏t

j=0 αt such that:

xt =
√

α̂tx0 +
√

1− α̂tε (10.58)

for ε ∼ N (0, I).

10.5.2 Reverse Generation by Sampling

Reversing the noising process requires sampling the posteriors q(xt−1|xt). The

posteriors are Gaussian distributions, however they are unknown since they de-

pend on q(x0). Therefore we use a neural network to approximate the mean and

covariance of the posteriors normal distribution by:

pθ(xt−1|xt) = N (μθ(xt, t), σθ(xt, t)) (10.59)

Alternatively the mean of the distribution may be derived directly using Bayes’

rule by predicting the noise εθ(xt, t) (Ho et al., 2020):

μθ(xt, t) =
1√
xt

(

xt −
βt√
1− α̂

εθ(xt, t)

)

(10.60)
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Figure 10.5 Manifold and tangent plane: exponential and logarithm maps between the
tangent plane and the manifold. A line in the tangent plane corresponds to a geodesic
in the manifold.

10.6 Geometric Variational Inference

This section generalizes variational inference and normalizing flows from Eu-

clidean to Riemannian spaces (Gemici et al., 2016), describing families of distri-

butions that are compatible with a Riemannian geometry and metric (Arvanitidis

et al., 2018; Davidson et al., 2018; Holbrook, 2018; Saha et al., 2019). Finally,

we consider the geometry of the latent space in variational autoencoders (Chen

et al., 2019; Shukla et al., 2018; Wang and Wang, 2019).

We briefly define a Riemannian manifold and metric, geodesic, tangent space,

exponential, and logarithm maps (Carmo, 1992; Spivak, 1999; Rahman et al.,

2005; O’Neill, 2006; Do Carmo, 2016). A manifold of dimension d has at each p0 ∈
M a tangent space Tp0(M) of dimension d consisting of vectors θ corresponding

to derivatives of smooth paths p(t) ∈ M , t ∈ [0, 1], with p(0) = p0. A Riemannian

manifold has a metric on the tangent space. If for tangent vectors θ we adopt

a specific coordinate representation θi, this quadratic form can be written as
∑

ij gij(p)θiθj . Between any two points p0 and p1 in the manifold, there is at

least one shortest path, having arc length ℓ(p0, p1). Such a geodesic has an initial

position p0, an initial direction θ
‖θ‖2

, and an initial speed ‖θ‖2. The procedure of
fixing a vector in θ ∈ Tp(M) as an initial velocity for a constant-speed geodesic

establishes an association between Tp0(M) and a neighborhood of p ∈ M . This

association is one-to-one over a ball of sufficiently small size. The association is

formally defined by the exponential map p1 = expp0
(θ). Within an appropriate

neighborhood p0, the inverse mapping is called the logarithm map and is defined

by θ = logp0
(p1), as illustrated in Figure 10.5.
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Normalizing flows have been extended from Euclidean space to Riemannian

space (Gemici et al., 2016). A simple density on a manifold M is mapped to the

tangent space TpM . Normalizing flow transformations are then applied to the

mapped density in the tangent space, and the resulting density is mapped back

to the manifold.

In VI, several transformation choices of a family of distributions are compatible

with a Riemannian geometry (Davidson et al., 2018; Holbrook, 2018; Falorsi

et al., 2019; Saha et al., 2019). For example, transforming a distribution by the

square root to the positive orthant of the sphere results in the square root density

of probability distributions. Probability distributions are then represented by

square root densities, and the geodesic distance is defined by the shortest arc

length. Again, p1 = expp0
(θ) maps the tangent space to the sphere, and θ =

logp0
(p1) maps the sphere to the tangent space. Densities are represented in the

tangent space, and in a similar fashion to normalizing flows, parallel transport

is used to map one tangent space to another.

The decoder in the VAE is used for both reconstruction and synthesis, gen-

erating new samples x from latent variables z. In the past decade, generating a

sequence of samples which smoothly morph or warp graphical objects required

meticulously specifying correspondence between landmarks on the objects. In

contrast, using the decoder as a generator and interpolating between hidden vari-

ables in latent space allows us to perform this transformation without specifying

correspondence. A question that arises is whether performing linear interpolation

is suitable in the latent space. Interpolation may be performed by walking along

a manifold rather than linear interpolation in the latent space. Specifically, the

latent space of a VAE can be considered as a Riemannian space (Chen et al.,

2019). Using a Riemannian metric rather than a Euclidean metric in the latent

space provides better distance estimates (Arvanitidis et al., 2019; Mallasto et al.,

2019), which improve interpolation and synthesis results (Shukla et al., 2018), as

well as text-generation results (Wang and Wang, 2019), increasing the mutual

information between the latent and observed variables.

10.6.1 Moser Flow

Moser Flow (Rozen et al., n.d.) is a continuous normalizing flow on a manifold

in which the model density is parameterized by the difference between the prior

density and the divergence of a neural network. The divergence operator is simple

and local, and this approach avoids solving an ODE during training.

10.6.2 Riemannian Score-Based Generative Models

Riemannian score-based generative models (De Bortoli et al., 2022) extend score-

based gradient models to Reimannian manifolds by using the time-reversal of

Brownian motion. This approach scales to high dimensions and is applied to a

broad range of manifolds.
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10.7 Software Libraries

Scalable implementations of VI and VAEs are available as part of Google’s Ten-

sorFlow Probability library (Dillon et al., 2017) and Uber’s Pyro library (Bing-

ham et al., 2019) and for Facebook’s PyTorch deep learning platform (Paszke

et al., 2017).

10.8 Summary

In this chapter we introduced VI using both RKL and FKL. The extension

to BBVI is used in practice for inference on large datasets. Key advantages

of Bayesian inference in the deep learning setting are that it generalizes deep

learning algorithms by computing posterior approximations and that it enables

sequential updates by iteratively setting the prior to be the previous posterior

and recomputing the posterior based on new data.

The chapter then covers the VAE algorithm, which consists of an encoder neu-

ral network for inference and decoder network for generation, trained end-to-end

by backpropagation. We described a way in which the variational approximation

of the posterior is improved using a series of invertible transformations, known as

normalizing flows, in both discrete and continuous domains. Finally, we explore

the latent space manifold and extend variational inference and normalizing flows

to manifolds.
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Reinforcement Learning





11 Reinforcement Learning

11.1 Introduction

Machine learning can be categorized into supervised learning, unsupervised learn-

ing and reinforcement learning. In supervised learning we are given input–output

pairs; in unsupervised learning we are given only input examples. In reinforce-

ment learning we learn from interaction with an environment to achieve a goal.

We have an agent, a learner, that makes decisions under uncertainty. In this set-

ting there is an environment, which is what the agent interacts with. The agent

selects actions and the environment responds to those actions with a new state

and reward. The agent’s goal is to maximize the reward over time, as shown in

Figure 11.1. The agent shown on the left of Figure 11.1 which is in a certain

state, interacts with the environment, performs an action, receives a reward, and

moves to another state. The goal is to learn the value of a state, or the prob-

ability of performing an action given a state, or the policy that maps a state

to an action. There are many applications of reinforcement learning, including

autonomous vehicles, robot control, game playing, portfolio management, and

dialogue synthesis. Consider a simple example of the video game Pong. The

state is the image of the screen, the actions are the movements up, down, or no

movement, and the reward is the game score. In chess, the state is represented

by the board configuration; the actions are the possible movements of the game

pieces; and the reward is the game outcome of win, lose, or draw.

11.2 Multi-Armed Bandit

Before considering reinforcement learning, we will consider the stateless setting

of a multi-armed bandit. Given k slot machines, an action is to pull an arm

of one of the machines. Pulling an arm results in a reward, which is a sample

drawn from that machine. At each time step t the agent chooses an action at
among the k actions, and receives a reward rt. Taking action a is pulling arm

i, which gives a reward r(a) with probability pi. Behind each machine there is

a probability distribution, and by pulling an arm we get a sample from that

distribution. Our goal is to maximize the total expected return. The value of

action a is the expected reward Q(a) = E[r |a = a]; however, we don’t know the
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Figure 11.1 Reinforcement learning setting. An agent interacts with an environment
by taking actions. The environment transitions the agent to a new state and the
agent receives a reward. Next, the agent takes another action and so on. In
reinforcement learning the transition function and reward function are unknown to
the agent that samples the environment.

action values. We can therefore estimate the value Qt(a) of action a at time t; for

example, by keeping the current mean reward for each action. A greedy action

takes the best estimate at time t, exploiting knowledge at = argmax
a

Qt(a), for

example by choosing the action with the largest mean reward.

11.2.1 Greedy Approach

Consider the example shown in Figure 11.2, with two possible actions: red or

blue (for example, to open a red door or a blue door). If we choose the red door

and get a reward of 0, then the value of red is 0. If we then choose the blue door

and get a reward of 1, then the value of blue is 1. If we follow a greedy strategy,

then since the value of the blue door of 1 is greater than the value of the red

door of 0, we will choose blue again. Say we choose blue again and get 3; then

if we update our mean for the blue door then the value of the blue door is now

2, which is also greater than the value of the red door which is 0. So we choose

the blue door again, and so long as the mean is greater than 0 we will keep on

choosing the blue door. However, it could have been the case that the value we

received for the red door of 0 was simply bad luck, and that value was sampled

from the tail of the distribution behind the red door, whereas the red distribution

may yield other high values. However, if we act greedily then a sampled value is

deterministically used, and in this case we may continue choosing the blue door

indefinitely, without going back to the red door.

11.2.2 ε-greedy Approach

A non-greedy action is exploring. If instead of taking a greedy action we behave

greedily most of the time, for example with a small probability ε we choose a

random action and with probability 1 − ε we take the greedy action, then we

are acting ε-greedy. The ε-greedy approach ensures that once in a while we will
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Figure 11.2 Greedy action selection. In the first step the agent chooses red and
observes a value of 0. Next, the agent chooses blue and observes a value of 1. Since 1
is greater than 0, the agent chooses blue again and this time observes the value 3, for
an average value of 2. The agent will continue selecting blue so long as the mean is
greater than 0, even though this result may be due to an unlucky value of 0 observed
for red. There is a trade-off between exploiting known knowledge, namely the average
values, and exploring.

take a random action; this promotes exploration, and may avoid getting stuck

continuously exploiting the known actions. Pseudocode for the ε-greedy approach

is shown in Algorithm 11.1.

Algorithm 11.1 ε-greedy.

for each action a do:

Q(a) = 0

N(a) = 0 number of times action is chosen

for each time step do:

a =

⎧

⎨

⎩

argmax
a

Q(a) with probability 1− ε

random action with probability ε

N(a) = N(a) + 1

Q(a) = Q(a) + (r(a)−Q(a))/N(a)
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11.2.3 Upper Confidence Bound

We can choose to be optimistic under uncertainty by using both the mean and

variance of the reward, taking the action using the upper confidence bound

(UCB) criteria (Auer et al., 2002):

argmax
a

(μ(r(a)) + εσ(r(a))) (11.1)

This criteria also appears in Monte Carlo tree search, which is used in Expert

Iteration and AlphaZero.

11.3 State Machines

A state machine is defined by a set S of possible states, an initial state s0, a set

of possible inputs X , a transition function f : S × X �→ S mapping from states

and inputs to a state, a set of possible outputs Y and a mapping g : S �→ Y from

a state to an output. For example, Figure 11.3, shows a state machine with two

states denoted by circles S = standing,moving. The start state in this example

s0 = standing is denoted by two concentric circles. The set of possible inputs

X = slow, fast, and a transition function f is denoted by orange or purple edges

from source to target states. The transition function f(s, x) = s′ maps each state

s and input x to a new state s′. For example s1 = f(s0, fast) = moving.

The states may not be observed directly; for example, they may be sensor

measurements or, as shown in the example in Figure 11.4, the state is that there

is a lioness in the grass, whereas an observation is only of the occluding grass. The

state and observation in this example are different and may result in different

outcomes. Formally, define Y to be the set of possible outputs or observations,

and g : S �→ Y a mapping from a state s to an output or observation y. If the state

and observation are the same then g is the identity, and in the example shown

in Figure 11.3 we get y1 = g(s1) = s1 = moving. The tuple (S,X , f,Y, g, s0)

defines the state machine. The state machine is applied for each time step t, in

which we iteratively compute:

st = f(st−1, xt)

yt = g(st)
(11.2)

for t ≥ 1. Notice that Equation 11.2 defining a state machine is the same as

our earlier definition of a recurrent neural network, where the hidden states are

replaced with states st.

11.4 Markov Processes

In the previous section we considered only actions in a stateless setting. We now

consider the state of the agent. In a Markov model, as illustrated in Figure 11.5,
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Figure 11.3 State machine with two states S = {standing,moving}, a starting state
s0 = standing, two inputs X = slow, fast, and a transition function f : S × X �→ S
denoted by orange and purple arcs. In this example f(s0, slow) = standing,
f(s0, fast) = moving, f(moving, slow) = standing, and f(moving, fast) = moving.

Figure 11.4 State (right) of a lioness in the grass, compared with an observation (left)
of only the grass occluding the lioness.

we make the assumption that state s2 is only dependent on the previous state

s1, and generally that state st+1 depends only on the previous state st.

In a Markov process, as illustrated in Figure 11.6, the probability of a state

st+1 is dependent only on the previous state st and an action at, namely the

probability is p(st+1|st, at).
Formally, a Markov process is defined by a set of possible states S, a set of

possible actions A, and a transition model T : S × A × S �→ R. An example of

a Markov process is illustrated in Figure 11.7. In this example, the set of three

possible states of a robot are S = {fallen, standing,moving}. For each state,

there are two possible actions the robot may take A = {slow, fast} denoted by

orange and purple arcs. The transition model defines the probability distribution

over the next state given the previous state and action. In this example g is the

identity and therefore the output is the state. For example, if the robot is in

state fallen and takes a slow action, then with probability 3
5 the robot will stay

fallen and with probability 2
5 the robot will stand up and be in state standing. If

Figure 11.5 In a Markov model state st+1 depends only on the previous state st.
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Figure 11.6 In a Markov process the probability of a state st+1 depends only on the
previous state st and action at.

the robot is in state fallen and takes fast action it will stay fallen; therefore the

only way for a fallen robot to stand up is by taking a slow action. If the robot is

standing and takes a slow action, then it will always, with probability 1, begin

to move, transitioning to state moving. If the robot is moving and takes a slow

action, it will keep on moving. If the robot is standing and takes a fast action,

then with probability 3
5 it will move, and with probability 2

5 it will fall. If the

robot is moving and takes a fast action, then with probability 4
5 it will keep on

moving and with probability 1
5 it will fall.

The 3× 3 transition matrices P (s, a, s′) for slow and fast actions are shown in

Equations 11.3 and are completely known. The rows denote states s, the columns

denote states s′, and the values of the matrix are the transition probabilities. For

example, taking a slow action as illustrated by orange arcs, the probability from

state fallen to fallen is 3
5 , from fallen to standing is 2

5 and from fallen to moving

there is no arc, which is 0 probability, such that a row of probabilities sums

to 1. The entire transition matrices are known, and there is no need to explore

in order to find the transition probabilities. In a similar fashion, the transition

matrix for taking a fast action is given and known to the robot:

P (s, slow, s′) =

⎡

⎣

3
5

2
5 0

0 0 1

0 0 1

⎤

⎦ P (s, fast, s′) =

⎡

⎣

1 0 0
2
5 0 3

5
1
5 0 4

5

⎤

⎦ (11.3)

In a Markov model the probability of a state is conditioned on the previous

state, as shown in Figure 11.5. In a Markov process the probability of a state

is conditioned both on the previous state and on the action taken, as shown

in Figure 11.6. A policy π(a|s) maps state to action, and following the policy

allows the agent to decide which action to take given the state it is in, as shown

in Figure 11.8.
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Figure 11.7 A Markov process defined by a set of states
S = {Fallen, Standing,Moving} and a set of actions A = {slow, fast}, with a known
transition function T (s, a, s′).

Figure 11.8 In a Markov process the probability of a state is conditioned both on the
previous state and on the action taken, and an action may be taken based on a policy
π.

11.5 Markov Decision Processes

A Markov decision process (MDP) is defined by a set of possible states S, a set

of possible actions A, a transition model T : S ×A× S �→ R, a reward function

R : S×A �→ R mapping a state and an action to a real value, and a discount fac-

tor γ. Together the tuple (S,A, T, R, γ) defines an MDP. At every time step t the

agent finds itself in state s ∈ S and selects an action a ∈ A. The agent transitions

to the next state s′ and receives a reward. Next, the agent selects a new action,

and so on. The reward R(s, a) is based on state and action. For example, we

may define the rewards of our robot to be R(fallen, slow) = 1, R(fallen, fast) =

0, R(standing, slow) = 1, R(standing, fast) = 2, R(moving, slow) = 1, and
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R(moving, fast) = −1, regardless of which of the possible arcs happens. The

rewards may not necessarily be defined in a deterministic fashion. We may de-

fine the rewards to be probabilistic based upon the transition function prob-

abilities as shown in Figure 11.9. For example, instead of having the reward

R(s, a) = R(fallen, slow) = 1 we may define the reward to be dependent on which

of the two arcs is taken such that for T (s, a, s′) = p(fallen, slow, standing) = 2
5

the reward is 1 and for T (s, a, s′) = p(fallen, slow, fallen) = 3
5 the reward is −1.

The 3 × 2 matrix R of expected rewards given a state s and action a for the

robot example is given by Equation 11.4. The expected reward for state fallen

and slow action is 3
5 × (−1)+ 2

5 ×1 = − 1
5 and the expected reward of state fallen

and fast action is 0. In a similar fashion, the expected reward of state standing

for slow action is 1 and for fast action is 4
5 , and the expected reward for state

moving and slow action is 1 and for a fast action is 7
5 . Considering each row of

the reward matrix, we can take the action that maximizes the reward from that

state. Therefore, an optimal policy that chooses an action, for a single (myopic)

time step, with the maximum reward for each state will choose a fast action from

state fallen, receiving an expected reward of 0, a slow action from state standing,

receiving an expected reward of 1, and a fast action from state moving, receiving

an expected reward of 7
5 . In an MDP both the transition matrices T (s, a, s′) and

the reward function R(s, a) are known. In contrast, in reinforcement learning the

agent does not know T and R and learns them by sampling the environment.

R(s, a) =

⎡

⎣

− 1
5 0

1 4
5

1 7
5

⎤

⎦ (11.4)

In summary, in an MDP the transitions are well defined:

P (s′, r|s, a) = P (st+1 = s′, rt+1 = r|st = s, at = a) (11.5)

where
∑

s′

∑

r P (s′, r|s, a) = 1 for all (s, a). The expected reward for state–action

pairs are:

R(s, a) = E [rt+1|st = s, at = a] =
∑

r

r
∑

s′

P (s′, r|s, a) (11.6)

and the state–transition probabilities are:

P (s′|s, a) = P (st+1 = s′|st = s, at = a) =
∑

r

P (s′, r|s, a) (11.7)

and the expected rewards for state–action–next-state are:

R(s, a, s′) = E [rt+1|st = s, at = a, st+1 = s′] =

∑

r rP (s′, r|s, a)
P (s′|s, a) (11.8)

11.5.1 State of Environment and Agent

In the real world the state is more complex since the state and what the agent

observes are often not the same. For example, the agent may observe the grass,
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Figure 11.9 Markov decision process defined by a set of states
S = {Fallen, Standing,Moving} and a set of actions A = {slow, fast}, with known
transition function T (s, a, s′) and reward function R(s, a).

Figure 11.10 The agent action at is based on an observation ot which may be different
from the state st.

whereas the true state of the environment is that there is a lion hidden in the

grass that the agent does not observe and therefore cannot act upon. In the real

world the state of the environment s and the observation o are often different.

The state of the environment yields an observation and the agent’s action is

based on the observation rather than the environment state, as shown in Figure

11.10.

For example, in the game Breakout the screen is the observation, whereas

the environment is the game console and the state of the environment are the

instructions and RAM of the game console, as shown in Figure 11.11. Given

sufficient data examples of observations and environment states we may consider

performing reverse engineering and infer the environment state from observation.



202 11 Reinforcement Learning

Figure 11.11 In the video game Breakout the agent observes the screen pixels o. The
game console is the environment e, and the environment state se are the instructions
and RAM of the console.

11.6 Definitions

11.6.1 Policy

Next, we define a policy π : S �→ A which is a mapping from state or observation

to action. Consider a policy as being similar to a rule book which tells the

agent which action to take with a certain probability from each state. For each

state s we have a set of possible actions a, and for each of these actions we

have a probability of the action given that state. In our robot example, shown

in Figure 11.7, we may define four policies: πA always take a slow action; πB

always take a fast action; πC if fallen take slow action and otherwise take fast

action; and πD if moving take fast action otherwise take slow action. These four

policies may represent four different rule books. A policy does not necessarily

need to be deterministic. A policy may be stochastic by adding randomness to

the agent actions. For example, the stochastic policy πE which for all states takes

a slow action with probability 0.3 and a fast action with probability 0.7. At each

time step t the agent implements the mapping π from states to probabilities of
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Figure 11.12 Example of the state of an agent in a maze illustrated by a position in
the maze denoted by the black dot.

selecting each action:

πt(a|s) = P (at = a|st = s) (11.9)

as shown in Figure 11.8.

As a second example of a policy, consider a maze where the state is any position

in the maze as shown in Figure 11.12. The agent begins at a state, for example

the start state shown on the bottom right of the maze, and has a goal state –

shown on the top center of the maze. A policy is a rule book that tells the agent

what action to take, with what probability, from each state, as illustrated by the

arrows in the maze shown in Figure 11.13. This rule book may be a deterministic

policy defined by a = πt(s), as illustrated by a single arrow in each square of the

maze, or a stochastic policy with four arrows, one in each direction, in each state

of the maze whose lengths denote the probability of moving in each direction

given that state πt(a|s) = P (at = a|st = s). Following the policy shown in

Figure 11.13 from any state results in the goal state.

11.6.2 State Action Diagram

Figure 11.14 shows a state–action diagram as a tree. The agent starts from a root

node representing state s and takes an action a. The action is selected by the

agent based on a policy π mapping state to action. Based on the state–action pair

(s, a) represented by a black node, the environment provides the agent with a
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Figure 11.13 Example of a deterministic policy defining movements, from each white
square, represented by green arrows. The states are the white squares and the
possible actions are A = {up, down, left, right} arrows. A stochastic policy may define
a probability over the actions for each state.

reward r represented by an edge from the black node, and the transition function

moves the agent to a new state s′ denoted by a leaf node. Nodes representing

states are shown in yellow, and nodes representing states and actions are shown

in black. The state–action diagram tree represents an episode (s, a, r, s′) of the

agent. In the first part the agent takes an action, whereas in the second part the

transition function or environment provides a reward and moves the agent. This

process is repeated from s′ for another episode, and so on.

11.6.3 State Value Function

Next we would like to know: What is the value of a policy π : S �→ A ? This

depends on the number of steps we take following the policy. In our robot example

shown in Figure 11.9, we may rent the robot for h steps; afterward we do not

have access to the robot – we can say the robot will be destroyed after h steps.

We call h the horizon, the number of time steps left for the policy to be applied.

Define V h
π (s) as the state value function with respect to a policy π with horizon

h starting at state s. We can compute V h
π (s) by induction on the number of steps

remaining, h. In the base case, there are no steps remaining, h = 0; therefore no

matter what state the agent is in, the value V 0
π (s) = 0. Next, the value of a policy

π at state s with horizon h is the reward in s plus the next state’s expected value
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Figure 11.14 State–action diagram tree. The root of the tree represents a state s. The
agent takes action a leading to node (s, a). The transition function or environment
then gives the agent a reward r and moves the agent to state s′ represented by a leaf
node.

with horizon h− 1. For h = 1:

V 1
π (s) = R(s, π(s)) + V 0

π (s) = R(s, a) + 0 (11.10)

For h = 2:

V 2
π (s) = R(s, π(s)) +

∑

s′

T (s, π(s), s′)R(s′, π(s′)) (11.11)

and for any h:

V h
π (s) = R(s, π(s)) +

∑

s′

T (s, π(s), s′)V h−1
π (s′) (11.12)

which define V h
π (s) recursively as a function of V h−1

π (s′).
Consider the value of a state Vπ(s) with respect to a policy π for the maze

example shown in Figure 11.15. The goal is to reach the center top state from

the start state at the bottom right, and in each step we lose a point. When we

are one step away from the goal and we follow the policy shown in Figure 11.13,

which says to go up if you are in the state below the goal, then the value of that

state is −1. The value V of a state s is always with respect to a policy π. Given

a policy, or rule book, as shown in Figure 11.13, we can infer the value of states,

as shown in Figure 11.15. On the other hand, given the values of states we can

infer a policy. The state value function Vπ(s) for a policy π measures how good

it is for the agent to be in a given state in terms of expected future rewards for

an infinite horizon. The value function defined with respect to an agent’s policy
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Figure 11.15 Example of a state value function defined on a maze.

π is the expectation over the return:

Vπ(s) = Eπ [gt|st = s] = Eπ

[

∑

k

γkrt+k+1|st = s

]

(11.13)

and is illustrated in Figure 11.14. This computation involves two steps. In the

first step, given a state we consider the set of possible actions. Once we take

an action, the second step is that the environment blows us to the next state.

We compute the expectation of the return since the policy may be stochastic.

We consider the return since we take into account the long-term rewards rather

than just the immediate reward. The return is the reward over time discounted

by a factor γ. If γ = 0 then the agent is myopic and takes into account only the

immediate reward. If γ = 1 then the agent is farsighted, taking into account the

long-term reward.

In the case of an infinite horizon h = ∞ we don’t know when the game or

robot episodes will be over and may potentially play an infinite number of steps.

A problem is that Q∞ may be infinite, and therefore we cannot select one action

over another. One solution is to find a policy that maximizes an infinite horizon

discounted value:

E

[ ∞
∑

t=0

γtRt|π, s0
]

= E
[

R0 + γR1 + γ2R2 + · · · |π, s0
]

(11.14)

where t denotes the number of steps from the starting state. The expected infinite
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horizon value of state s under policy π is:

Vπ(s) = E
[

R0 + γR1 + γ2R2 + · · · |π, s0 = s
]

= E [R0 + γ(R1 + γ(R2 + · · · ))] |π, s0 = s)

= R(s, π(s)) + γ
∑

s′

T (s, π(s), s′)Vπ(s
′)

where t denotes the number of step from the start, yielding n = |S| linear

equations which can be solved.

11.6.4 Action Value Function

Similar to the state value function we can consider the action value function,

which extends the mapping to each of the possible actions. We can compute

Qh
π(s, a) with respect to a policy π with horizon h for state s and action a in a

similar fashion to our iterative computation of V h
π (s). For h = 0, Q0

π(s, a) = 0.

For h = 1, Q1
π(s, a) = R(s, a) + 0. For h = 2:

Q2
π(s, a) = R(s, a) +

∑

s′

T (s, a, s′)max
a′

R(s′, a′) (11.15)

For any h we can use Qh−1
π (s′, a′) to compute Qh

π(s, a):

Qh
π(s, a) = R(s, a) +

∑

s′

T (s, a, s′)max
a′

Qh−1
π (s′, a′) (11.16)

For n states |S| = n, m actions |A| = m, and horizon h, computation time of

Qh
π(s, a) is O(nmh).

In the maze example shown in Figure 11.16 we have four possible actions: A =

{up, down, left, right} so the action value function Qπ(s, a) takes into account

both the state s and the action a with respect to a policy π. The action value

function Qπ(s, a) for policy π is the expected return for s and a under policy π

with discount γ:

Qπ(s, a) = Eπ [gt|st = s, at = a] = Eπ

[

∑

k

γkrt+k+1|st = s, at = a

]

(11.17)

The value of taking action a in state s under policy π is the expected return.

This expectation is computed by summing the products of the probabilities of

each action by their returns, as illustrated in Figure 11.17 in which black nodes

represent state–action pairs and yellow nodes represent states.

An example of state value and action value functions for the game of Breakout

is shown in Figure 11.18. As the ball moves up toward the bricks the value of

the state increases; as the ball moves down toward the paddle the value of the

state decreases. The action value function shows the value of the state for each

possible action. Given the action value function, we can select the action for

which the action value function is maximized.
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Figure 11.16 Example of an action value function.

Figure 11.17 Example of an action value state diagram.

The relationship between the state value function Vπ(s) and the action value

function Qπ(s, a) is:

Vπ(s) =
∑

a

π(a|s)Qπ(s, a) (11.18)
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Figure 11.18 State value function Vπ(s) and action value functions Qπ(s, a) for actions
A = {left, right, no-op} for the video game Breakout. As the ball gets closer to the
brick wall the state value function increases due to the expected reward to be received
by hitting the wall, whereas as the ball goes down the state value function decreases
due to the possibility of missing the ball.

for all states s.

11.6.5 Reward

In our maze example, the reward shown in Figure 11.19 is −1 for each time step

spent in the maze. The return is the sum of rewards gt = rt+1 + rt+2 + · · ·+ rT .

If the agent plays in the maze for a very long time, for many time steps, the

agent will accumulate a very large negative reward. Therefore, the reward can

be discounted by a discount factor γ ∈ [0, 1] such that:

gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
T−t−1
∑

k=0

γkrt+k+1 (11.19)

If γ = 0 then the agent is myopic, maximizing only immediate rewards, and as γ

approaches 1 the agent becomes farsighted, considering the long-term horizon.
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Figure 11.19 Reward for each time step spent in the maze is −1.

The returns at successive time steps are dependent upon on each other. The

return at time step t is the next reward plus γ times the return at the next time

step t+ 1, such that for an infinite horizon:

gt = rt+1 + γrt+2 + γ2rt+3 + · · · = rt+1 + γ(rt+2 + γrt+3 + · · · ) = rt+1 + γgt+1

(11.20)

which defines a recursive relationship between the return gt at time step t and

the return gt+1 at the next time step t+ 1.

11.6.6 Model

We can build a model for the environment which will help us predict what the

environment will do next. If the environment is deterministic then we can form

a transition matrix T to predict the next state and a reward matrix R to predict

the next reward. A model is optional. Reinforcement learning methods can be

classified into model-free methods and model-based methods.

11.6.7 Agent Types

Reinforcement learning methods may be categorized into model-based and model-

free methods. Model-based methods learn a model of the environment which

is used to predict the value of a given action in a given state. For example,
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model-based methods may model the transition function and the reward func-

tion. Model-based methods may further be divided into methods that are given

the model and methods that learn the world model. Model-based reinforcement

learning methods that learn the world model begin with a policy and interact

with the environment using that policy to yield observations. Next, given the

observations, we may build a world model from the known observations, and

finally use the world model to train the agent, resulting in an improved policy.

In contrast to model-based approaches, model-free methods either find a policy

directly or estimate a value function, for example by Q-learning. Policy-based

methods learn a policy that maximizes the expected reward and do not require

a model of the environment. Value-based methods learn a value function that

estimates the expected reward of taking a given action in a given state. Model-

free agents may be based on optimizing only a value function, only a policy, or

both. Actor–critic algorithms optimize for both the value function and policy.

Model-free methods are simpler to implement than model-based methods, and

are more suitable for real-time applications. However, they are less likely to

succeed in complex environments. Model-based methods may be more suitable

for complex environments, but require more computational resources.

11.6.8 Problem Types

The planning problem is the case in which the environment is known, such that

when we take an action in each state we get a reward. The reinforcement learning

problem handles the real world in which the environment is unknown and changes

since the agent and others interact with the environment.

There is a classical trade-off between the types of behaviors of an agent: specif-

ically, between exploration in which the agent finds out more about the environ-

ment, and exploitation in which the agent uses known information to maximize

returns. For example, consider the trade-off between showing a new ad com-

pared with showing the best ad based on previous performance for targeting an

audience.

11.6.9 Agent Representation of State

As the agent moves between states by taking an action and receiving a reward,

it generates a set of action, state, and reward tuples (at, st, rt), called episodes,

which together form a history: ht = a1, s1, r1, a2, s2, r2, . . . , at, st, rt. Our rein-

forcement learning algorithm maps the history ht to the next action at+1. If

we assume a Markovian property then we may consider the previous state or

consider the last episode, otherwise we may consider the entire agent history.

Our assumptions about agent state may vary. Consider the example shown in

Figure 11.20. In the first interaction with the environment the agent sees green,

green, blue, red and receives a reward of 100. In the second interaction with

the environment the agent sees red, green, blue, blue and loses 100. In the third
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Figure 11.20 Different representations of agent state lead to different predicted
rewards. The top row consists of the sequence of the colors green, blue, and red,
followed by a reward of 100. The second row consists of 2 blue nodes, 1 green, and 1
red, followed by a reward of −100. In the bottom row, if our representation of state is
the sequence of the last three colors we may expect a reward of 100, whereas if our
representation of state is the number of appearances of each color regardless of order
then we may expect a negative reward of −100. The representation of state may also
be different from these two examples, and yield a different reward altogether.

interaction with the environment the agent sees blue, green, blue, red. If we as-

sume a Markov property then we may predict that after the sequence of green,

blue, red we may expect a reward of 100. Whereas if we assume that state is

modeled by number of reds, greens, and blues, then we may predict that having

seen two blues, one green, and one red we will lose 100. This example illustrates

that our representation of state results in different predictions.

11.6.10 Bellman Expectation Equation for State Value Function

The expected return starting from s and following policy π satisfies the recursive

relationship:

Vπ(s) = Eπ [gt|st = s] (11.21)

= Eπ

[

∑

k

γkrt+k+1|st = s

]

(11.22)

= Eπ

[

rt+1 + γ
∑

k

γkrt+k+2|st = s

]

(11.23)

= Eπ [rt+1 + γgt+1|st = s] (11.24)

=
∑

a

π(a|s)
∑

s′

∑

r

P (s′, r|s, a) (r + γEπ [gt+1|st+1 = s′]) (11.25)

=
∑

a

π(a|s)
∑

s′,r

p(s′, r|s, a)(r + γVπ(s
′)) (11.26)
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Figure 11.21 Backup diagram corresponding to the Bellman expectation equation for
evaluating a state value function Vπ. The equation
Vπ(s) =

∑

a
π(a|s)

∑

s′,r
p(s′, r|s, a)(r + γVπ(s

′)) is linear, and defines a recursive

relationship between Vπ(s) and Vπ(s
′). The equation is used for evaluating Vπ, and

there exists a unique solution. The value of a state s with respect to a policy π is the
discounted value of the expected next state with respect to π plus the expected
reward. The equation averages over all possibilities, weighing each by its probability
to occur.

for all s, called the Bellman equation for Vπ which establishes the relationship

between the value of a state and values of successor states. The Bellman ex-

pectation equation can be used to evaluate Vπ(s), and defines the relationship

between Vπ(s) and Vπ(s
′):

Vπ(s) =
∑

a

π(a|s)
∑

s′,r

P (s′, r|s, a)(r + γVπ(s
′)) (11.27)

which means that the value of a state equals the discounted value of the expected

next state with respect to π plus the expected reward. The Bellman expectation

equation averages over all possibilities, weighting each by its probability of oc-

curring. The Bellman equation is a linear equation and may be written in vector

notation as:

V h+1
π = r + TV h

π (11.28)

where Vπ is the vector of values for each state, r is the reward vector for each

state, and T is the transition matrix.
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Figure 11.22 Backup diagram corresponding to the Bellman expectation equation for
evaluating an action value function Qπ with respect to a given policy π. The equation
Qπ(s, a) =

∑

s′,r
p(s′, r|s, a)

(

r + γ
∑

a′ π(a
′|s′)Qπ(s

′, a′)
)

is linear, and defines a

recursive relationship between Qπ(s, a) and Qπ(s
′, a′). Starting at state s and taking

action a, the environment moves the agent to state s′ where we compute the average
over the available actions, and reach the state–action pair (s′, a′).

11.6.11 Bellman Expectation Equation for Action Value Function

We define Qπ(s, a) recursively as a function of Qπ(s
′, a′):

Qπ(s, a) = Eπ [gt|st = s, at = a] (11.29)

= Eπ

[

rt+1 + γrt+2 + γ2rt+3 + · · · |s, a
]

(11.30)

= Es′,a′ [r + γQπ(s
′, a′)|s, a] (11.31)

=
∑

s′

∑

r

P (s′, r|s, a)
(

r + γ
∑

a′

π(a′|s′)Qπ(s
′, a′)

)

(11.32)

where the first sum denotes where the wind will blow us and the second sum

what action we will take. The Bellman expectation equation for action value

function is also a linear equation.

11.7 Optimal Policy

Solving a task requires finding the policy that achieves high reward over the long

run. We define the optimal policy for MDPs by defining ordering over policies.

A policy π is better than or equal to a policy π′ if its expected return is greater

than or equal to that of π′ for all states:

π ≥ π′ iff Vπ(s) ≥ Vπ (s) for all s (11.33)
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There always exists at least one policy better than or equal to all other policies,

which is the optimal policy π⋆.

11.7.1 Optimal Value Function

The goal of finding an optimal policy is to maximize the expected return, and

optimal policies share the same optimal state value function:

V⋆(s) = max
π

Vπ(s) = max
π

Eπ [gt|st = s] (11.34)

for all s. Similarly, optimal policies share the same optimal action value function:

Q⋆(s, a) = max
π

Qπ(s, a) = max
π

Eπ [gt|st = s, at = a] (11.35)

for all s and a.

Given Qh(s, a) for all states and actions we can compute the optimal finite

horizon policy by:

πh
⋆ (s) = argmax

a
Qh(s, a) (11.36)

11.7.2 Bellman Optimality Equation for V⋆

The Bellman optimality equation for V⋆ is that the value of a state under an

optimal policy is equal to the expected return for the best action from that

state:

V⋆(s) = max
a

Qπ(s, a) (11.37)

= max
a

Eπ⋆ [gt|st = s, at = a] (11.38)

= max
a

Eπ⋆

[

∑

k

γkrt+k+1|st = s, at = a

]

(11.39)

= max
a

Eπ⋆ [rt+1 + γgt+1|st = s, at = a] (11.40)

= max
a

Eπ⋆ [rt+1 + γV⋆(st+1)|st = s, at = a] (11.41)

= max
a

∑

s′,r

P (s′, r|s, a)(r + γV⋆(s
′)) (11.42)

which due to the maximum is a non-linear equation:

V⋆(s) = max
a

∑

s′,r

P (s′, r|s, a)(r + γV⋆(s
′)) (11.43)

with a unique solution independent of π. The computation is illustrated in Figure

11.23. Starting from a state s, we first take the maximum over the actions,

maxa; then we are at a state–action pair (s, a) and we take the expectation over

where the wind will blow us
∑

s′,r. Compare the non-linear Bellman optimality

equation 11.43 that begins with a maximum operation with the linear Bellman
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Figure 11.23 Backup diagram corresponding to the Bellman optimality equation for
finding the optimal state value function V�. Starting at state s the agent maximizes
over the available actions. From the state–action pair (s, a) we compute the
expectation over where the environment takes the agent. The equation
V�(s) = maxa

∑

s′,r
p(s′, r|s, a)(r + γV�(s

′)) is non-linear due to the maximum

operation, and defines a recursive relationship between V�(s) and V�(s
′). It has a

unique solution that is independent of a policy π.

expectation Equation 11.27 that begins with a summation; the second terms of

both equations are the same.

11.7.3 Bellman Optimality Equation for Q⋆

Connecting the optimal state value function V⋆ to the optimal action value func-

tion Q⋆:

V⋆(s) = max
a

Q⋆(s, a) (11.44)

therefore working with Q is convenient.

In a similar fashion, the Bellman optimality equation for Q⋆ is:

Q⋆(s, a) = E

[

rt+1 + γmax
a

Q⋆(s
′, a′)|s, a

]

(11.45)

=
∑

s′,r

P (s′, r|s, a)(r + γmax
a

Q⋆(s
′, a′)) (11.46)

which is a non-linear equation whose computation is illustrated in Figure 11.24.

Starting from a state–action pair (s, a) the environment may take us to a new

state s′. Once in the new state s′ we maximize over the next actions we can take

to reach (s′, a′).
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Figure 11.24 Backup diagram corresponding to the Bellman optimality equation for
finding the optimal action value function. The equation is non-linear and used for
finding Q� by defining a recursive relationship between Q�(s, a) and Q�(s

′, a′).
Starting from state and action (s, a) the equation computes the expectation of where
the environment will take the agent, and then once in state s′ maximizes over the
actions the agent can take. Once we compute
Q�(s, a) =

∑

s′,r
p(s′, r|s, a)(r + γmaxa Q�(s

′, a′)), the agent can act according to the
optimal policy π� = argmax

a

Q�(s, a).

Once we know Q⋆(s, a) we can find the best policy:

π⋆ = argmax
a

Q⋆(s, a) (11.47)

Overall, we’ve seen four Bellman equations: two linear expectation equations

(the Bellman expectation equation for state value function Vπ(s) defined in

Equation 11.27 and the Bellman expectation equation for action value function

Qπ(s, a) defined in Equation 11.29); and two non-linear optimality equations (the

Bellman optimality equation for state value function V⋆(s) defined in Equation

11.43 and the Bellman optimality equation for action value function Q⋆(s, a)

defined in Equation 11.45).

Next, we can use the Bellman optimality equation to solve the MDP. Consider

the example illustrated in Figure 11.9. Applying the Bellman optimality equation

we get:

V 1
⋆ (fallen) = 0 do nothing or fast action

V 1
⋆ (standing) = 1 slow action

V 1
⋆ (moving) =

7

5
fast action
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V 2
⋆ (fallen) = max{−1

5
+

2

5
× 1, 0 + 0} =

1

5
slow action

V 2
⋆ (standing) = max{1 + 7

5
,
4

5
+

3

5
× 7

5
+

2

5
× 0} =

12

5
slow action

V 2
⋆ (moving) = max{1 + 7

5
,
7

5
+

4

5
× 7

5
+

1

5
× 0} = 2.52 fast action

V 3
⋆ (fallen) = max{−1

5
+

2

5
× 12

5
+

3

5
× 1

5
, 0 + 1× 1

5
} = 0.88 slow action

V 3
⋆ (standing) = max{1 + 2.52,

4

5
+

3

5
× 2.52 +

2

5
× 1

5
} = 3.52 slow action

V 3
⋆ (moving) = max{1 + 2.52,

7

5
+

4

5
× 2.52 +

1

5
× 1

5
} = 3.52 slow action

computing the optimal policy given a perfect model by dynamic programming,

called planning. Our assumptions are that the environment is an MDP that is

known, namely that the state, action, and reward sets are known and finite,

and that the dynamics are given by known probability p(s′, r|s, a) for all states,
actions, and rewards. Unfortunately, in the real world this is rarely useful since

we do not know the dynamics or a perfect model of the environment, we do not

have sufficient resource to store the entire MDP, and the Markov property may

not hold. As a compromise, we will approximately solve the Bellman equation,

focusing our efforts on learning to make good decisions at frequent states and

putting less effort into learning rare states.

Next, we will use dynamic programming both for the prediction problem of

policy evaluation and the control problem of finding the best policy.

11.8 Planning by Dynamic Programming with a Known MDP

11.8.1 Iterative Policy Evaluation

Next, we turn the Bellman expectation equation for state value function into

an algorithm for evaluating a policy π, called iterative policy evaluation. We

will iteratively approximate V and use Equation 11.27 to update the value of

each state. Algorithm 11.2 describes the pseudocode. The inner loop applies the

Bellman expectation equation repeatedly until the value of V converges to Vπ.

Figure 11.25 illustrates the updating of the array storing the state values at each

iteration. The algorithm converges both when using two arrays for storing the

state values and when updating the state values array in-place.

11.8.2 Policy Iteration

Next, we use the Bellman expectation equation and greedy policy improvement

to converge to the optimal policy π⋆. The policy iteration algorithm has an inner

loop of iterative policy evaluation followed by policy improvement. Algorithm

11.3 describes the pseudocode.
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Algorithm 11.2 Iterative policy evaluation.

initialize V (s) = 0 for each state s

repeat:

Δ = 0

for each state s do:

v = V (s)

V (s) =
∑

a π(a|s)
∑

s′,r P (s′, r|s, a)(r + γV (s′))
Δ = max{Δ, ‖v − V (s)‖}

until Δ < ε

Figure 11.25 Storing iterative updates of the state value function in an array of values
for each of the n = |S| states.

11.8.3 Infinite Horizon Value Iteration

Instead of policy iteration we can directly use the Bellman optimality equation

to efficiently converge to Q⋆. Our update rule is then:

Q(s, a) = R(s, a) + γ
∑

s′

T (s, a, s′)max
a′

Q(s′, a′) (11.48)

which turns into the value iteration algorithm shown in Algorithm 11.4.

11.9 Reinforcement Learning

In the previous section we introduced algorithms for evaluating a policy and

finding the optimal policy for a known MDP, given the transition function and

reward function, which is also called planning. In this section we introduce al-

gorithms for evaluating a policy and finding the optimal policy for an unknown
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Algorithm 11.3 Policy iteration.

initialize V (s) and π(s)

repeat:

policy evaluation

repeat:

Δ = 0

for each state s do:

v = V (s)

V (s) =
∑

a π(a|s)
∑

s′,r P (s′, r|s, a)(r + γV (s′))
Δ = max{Δ, ‖v − V (s)‖}

until Δ < ε

policy improvement

convergence = True

for each state s do:

a = π(s)

π(s) = argmax
a

∑

s′,r P (s′, r|s, a)(r + γV (s′))

if a �= π(s) then:

convergence = False

until convergence

Algorithm 11.4 Value iteration.

initialize Q(s, a) = 0 for each state s and action a

repeat:

for each state s and action a do:

q = Q(s, a)

Q(s, a) = R(s, a) + γ
∑

s′ T (s, a, s
′)maxa′ Q(s′, a′)

Δ = max{Δ, ‖q −Q(s, a)‖}
until Δ < ε

MDP, without knowing the transition function or reward function in advance,

called reinforcement learning. In the real world the MDP is unknown, and yet

we would still like to choose the best actions. We do not assume a complete

known environment and therefore sample sequences of state, action and reward

from actual or simulated interaction with the environment to gain experience.

We generate sample transitions not knowing the complete probability distribu-

tion of transitions. We will first discuss model-based reinforcement learning and

then review two major sampling methods, namely Monte Carlo (MC) sampling

and temporal difference (TD) sampling.

Reinforcement learning methods may be divided into model-free and model-

based approaches. In turn, model-free approaches may be further divided into (1)

value-based or Q-learning methods such as DQN (Mnih et al., 2015); (2) policy-
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Figure 11.26 Storing iterative updates of the action value function in a 2D array of
values for each state and action.

based or policy optimization methods such as A3C (Mnih et al., 2016) and PPO

(Schulman et al., 2017); and (3) actor–critic methods such as DDPG (Lillicrap

et al., 2016), which are a combination of (1) and (2). Model-based approaches

may be divided into methods that are given the model, such as AlphaZero (Silver

et al., 2018), and methods that learn the model, such as world models (Ha and

Schmidhuber, 2018).

11.9.1 Model-Based Reinforcement Learning

One of the simplest approaches to reinforcement learning is to model the transi-

tion and reward based on states, actions, and rewards experienced so far (s, a, r, s′)
and to use these to model an MDP. A simple model for a transition function is:

T (s, a, s′) =
N(s, a, s′) + 1

N(s, a) + |S| (11.49)

where N(s, a, s′) counts the number of times the agent was in state s, took action

a and moved to state s′, andN(s, a) =
∑

s′ N(s, a, s′) counts the number of times

the agent was is state s and took action a. The correction by adding 1 to the

numerator makes sure we don’t estimate the probability to be 0, and adding |S|
to the denominator makes sure we don’t divide by zero. This correction is only

required and significant in the first few samples, and then its effect is diminished.

A simple model for the reward function is recording the rewards R(s, a) for state

and actions:

R(s, a) =

∑

(s,a) r(s, a)

N(s, a)
(11.50)

Next, we can use these empirical estimates of the transition function and reward

function to solve the MDP as if T and R were known. A problem with this
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approach is that it may be infeasible to estimate T or R if the space of states or

actions is very large or continuous.

11.9.2 Policy Search

Instead of estimating the transition and reward functions, we can search for a

policy directly. We can define a function f(s, θ) = p(a|s) by a machine learning

model with parameters θ to approximate the probability of an action given a

state directly. This can be trained by gradient descent for finding the optimal

parameters θ⋆. Policy-based methods work well in continuous spaces and for

learning stochastic policies, and are described in detail in Chapter 12.

11.9.3 Monte Carlo Sampling

Monte Carlo sampling methods average sample returns and assume the experi-

ence is divided into episodes that terminate. Only when an episode completes are

the value and policy updated. Sampling is incremental, episode by episode, not

step by step. As motivation for incremental updates, consider the incremental

computation of the mean. The next mean at step t is the current mean at step

t− 1 plus the update given a new sample xt. The update is the normalized error

between the new sample xt and the previous mean at step t− 1:

μt =
1

t

t
∑

i=1

xi =
1

t

(

t−1
∑

i=1

xi + xt

)

=
1

t
((t− 1)μt−1 + xt)

=
1

t
(xt + tμt−1 − μt−1) = μt−1 +

1

t
(xt − μt−1)

Given a policy π our first goal is to learn the state value function Vπ. Dynamic

programming (DP) computes the value function from the MDP, whereas MC

learns the value function from sample returns:

V (st) = V (st) + α(gt − V (st)) (11.51)

where gt is the actual return following time step t, (gt − V (st)) is the MC error,

and α is a constant step size. In each sample we wait until the end of the episode

to determine the increment of V (st), as shown in Figure 11.27. Algorithm 11.5

describes the MC prediction pseudocode.

11.9.4 Temporal Difference Sampling

Monte Carlo (MC) TD learning methods use experience to solve the prediction

problem. Given experience following policy π, they update estimates of Vπ for st
occurring in that experience. Monte Carlo methods wait until the return is known

and use that return as a target for V (st). In contrast, TD learning (Sutton, 1988)
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Figure 11.27 Monte Carlo sampling for reinforcement learning. The return is evaluated
once an entire path, or rollout, terminates in a leaf node.

waits only until the next time step. At time t+1 TD methods form a target and

make an update using the observed reward rt+1 and the estimate V (st+1):

V (st) = V (st) + α(rt+1 + γV (st+1)− V (st)) (11.52)

Monte Carlo methods update V (st) toward the actual return gt, as shown in

Figure 11.27, whereas TD methods update V (st) toward the TD target rt+1 +

γV (st+1), as shown in Figure 11.28. The difference between the TD target and

V (st) is called the TD error. Algorithm 11.6 describes the TD prediction pseu-

docode.

As an example of the difference between MC and TD methods, consider the

episodes illustrated in Figure 11.29. Following these samples, the value of red is
3
4 , but what is the value of blue? Here is where MC sampling and TD sampling

differ. MC does not exploit the Markov property and therefore according to the

MC update rule in Equation 11.51 the value of blue is 0, whereas TD exploits
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Algorithm 11.5 Monte Carlo prediction.

initialize

policy π to be evaluated

V (s) = 0 for all s

returns(s) = ∅ for all states s

repeat:

Generate episode of π

for each state s in episode do:

g = return following first occurrence of s

returns(s) = returns(s) ∪ g

V (s) = μ(returns(s))

until convergence

Algorithm 11.6 Temporal difference prediction.

initialize

policy π to be evaluated

V (s) = 0 for all s

repeat:

Generate episode of π

for each state s in episode do:

a = action given by π for s

take action a, observe r, s′

V (s) = V (s) + α(r + γV (s′)− V (s))

s = s′

until s is terminal

the Markov property and according to the TD update rule in Equation 11.52 the

value of blue is 3
4 .

Monte Carlo methods use deep sampling until termination, whereas TD meth-

ods use shallow sampling. Temporal difference methods with one step look-ahead

are called TD(0), and in between TD(0) and MC there exist multiple methods

TD(n), depending on the number n of look-ahead steps. We can combine all the

n-step returns gnt using weights (1−λ)λn−1 to form TD(λ) following the update

rule:

V (st) = V (st) + α(gλt − V (st)) (11.53)

where gλt = (1− λ)
∑

n λ
n−1gnt .

11.9.5 Q-Learning

Q-learning is a model-free reinforcement learning method that does not model

the transitions or reward, and instead directly estimates a value function. In
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Figure 11.28 Temporal difference sampling for reinforcement learning. A biased
estimate of the state value is computed by looking ahead one or more steps, rather
than following an episode all the way to termination.

model-based reinforcement learning we estimate T and R, and using value itera-

tion, given T and R we can compute Q by Q(s, a) = R(s, a)+γ
∑

s′ T (s, a, s′)
maxa′ Q(s′, a′ Next, instead of estimating T and R, we will learn the Q function

T or R, known as Q -learning.Q-

Q(s, a) = Q(s, a)− α
(

Q(s, a)− (r + γmax
a′

Q(s′, a′)
)

(11.54)

where α is the learning rate, and γ is a discount factor. Instead of just taking

the action given by the value function, we use ε-greedy exploration. Therefore,

we select a random action with probability ε to promote exploration, and take

the action given by the value function otherwise.

This results in the Q-learning algorithm described in the pseudocode in Algo-

rithm 11.7: Q-learning is an off-policy reinforcement learning method that finds

the value function of an optimal policy while using another exploration policy.

)

directly from experience without knowing

learning incrementally updates the value function by:

.
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Figure 11.29 Example showing the difference between MC and TD sampling.

Algorithm 11.7 Q-learning.

initialize Q(s, a) = 0 for all states and actions

select start state s = s0
repeat:

a =

{

select action given Q and s with probability 1− ε

select random action with probability ε

q = Q(s, a)

take action a to get reward r and next state s′

Q(s, a) = Q(s, a)− α (Q(s, a)− (r + γmaxa′ Q(s′, a′))
Δ = max{Δ, ‖q −Q(s, a)‖}
s = s′

until Δ < ǫ

11.9.6 Sarsa

Similar to Q-learning, Sarsa is a model-free reinforcement learning method. In

contrast with Q-learning, which is an off-policy method, Sarsa is an on-policy

method that estimates a value of a policy while using the policy. Sarsa, as the

acronym implies, uses (s, a, r, s′, a′) tuples to incrementally update the value

function by:

Q(s, a) = Q(s, a)− α (Q(s, a)− (r + γQ(s′, a′))) (11.55)
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11.9.7 On-Policy vs. Off-Policy Methods

On-policy methods, such as Sarsa, evaluate or improve the policy that is used

to make decisions. They estimate the value of a policy while using it for control.

In contrast, off-policy methods, such as Q-learning, evaluate or improve a policy

different from that used to generate the data. Off-policy methods separate these

two functions into (1) a behavior policy, which is the policy used to generate be-

havior, and (2) a target policy, which is the policy that is imitated and improved.

Off-policy methods follow the behavior policy while improving the target policy,

often reusing experience generated from old policies.

11.9.8 Sarsa(λ)

We may use TD updates in Sarsa, and Q-learning, by propagating rewards from

states with high rewards to the states that lead to them more efficiently, also

known as eligibility traces. The Sarsa(λ) update is defined by:

Q(s, a) = Q(s, a)− αN(s, a) (Q(s, a)− (r + γQ(s′, a′)) (11.56)

where N(s, a) = λγN(s, a) counts the number of times action a is taken in state

s, γ is a discount factor, and the parameter λ ∈ (0, 1) controls the rate of decay.

11.10 Maximum Entropy Reinforcement Learning

The objective of reinforcement learning is to find an optimal policy that maxi-

mizes return:

π⋆ = argmax
π

Er∼π

[

∑

t

R(st, at)

]

(11.57)

The objective of maximum entropy reinforcement learning is to find an optimal

policy that maximizes return and conditional action entropy:

π⋆ = argmax
π

Er∼π

[

∑

t

R(st, at) +Hπ(at|st)
]

(11.58)

whereHπ is the entropy of the policy conditional distribution over actions defined

by:

Hπ(at|st) = Eπ [− log π(at|st)] (11.59)

Optimizing this objective promotes both high return and exploration, leading to

actions with higher reward that allow taking random actions in the future. Max-

imum entropy reinforcement learning is more robust to disturbances to the dy-

namics and rewards (Eysenbach and Levine, 2022) and partial observations. Im-

proving upon this, a maximum–minimum entropy reinforcement learning frame-

work (Han and Sung, 2021) finds an optimal policy that maximizes return while
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visiting states with low entropy and maximizing their entropy for improving

exploration.

11.11 Summary

This chapter begins by defining a stateless multi-armed bandit, presenting the

trade-off between exploration and exploitation. Next, we define a state machine,

and then define an MDP with known transition and reward functions. Finally,

we present reinforcement learning in which the transition and reward functions

are unknown and therefore the agent interacts with the environment by sampling

the world.
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12.1 Introduction

Deep reinforcement learning uses deep neural networks for estimating value func-

tions and policies in reinforcement learning. Deep reinforcement learning has

achieved excellent performance on challenging control problems. This success

includes virtual environments with large state and action spaces, such as mas-

tering chess, Shogi, and Go (Silver et al., 2018), achieving Grandmaster level

in StarCraft II (Vinyals et al., 2019), outracing champion Gran Turismo drivers

(Wurman et al., 2022), and real-world changing environments, such as learning

quadrupedal locomotion over challenging terrain (Lee et al., 2020), autonomous

navigation of stratospheric balloons (Bellemare et al., 2020), and magnetic con-

trol of a Tokamak plasma fusion reactor (Degrave et al., 2022).

Chapter 11 presented MDPs and reinforcement learning. A key difference be-

tween the two is that when solving MDPs we know the transition function T

and reward function R, whereas in reinforcement learning we do not know the

transition or reward functions. In reinforcement learning an agent samples the en-

vironment; Chapter 11 ends with the Q-learning algorithm, which learns Q(s, a)

from experience. In many cases, storing the Q values in a table may be infeasible

when the state or action spaces are very large or when they are continuous. For

example, the game of Go consists of 10170 states. A solution is to approximate

the value function or approximate the policy. A deep neural network provides a

fast function approximation, allowing efficient interpolation between predicted

state values, state–action values, and action probabilities. In deep reinforcement

learning we use deep neural networks as fast function approximations for repre-

senting the state value function V (s), state–action value function Q(s, a), policy

π(a|s), or model.

Chapter 5 introduced convolutional neural networks, which classify images,

while Chapter 8 described Transformers used in natural language processing

and vision. In deep reinforcement learning, instead of predicting image classes

we may predict the values of a state or the probabilities of actions π(a|s) using a

neural network, and based on these probabilities we may take action. The neural

network serves as a function approximation. One choice for a non-linear function

approximation is a CNN, as shown in Figure 12.1. Given a state s as input,

such as an image of pixels, the neural network outputs an approximated value
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Figure 12.1 Deep reinforcement learning mapping an image state directly to an action
using a CNN by evaluating a policy π(at|st).

of the state or an approximated vector of probabilities for each action given the

state, and based on these takes an action a. The action a taken by the agent

results in the environment responding and sending the agent to state s′ with a

reward. The CNN may generalize to predict values or action probabilities given

an unseen image, or state.

12.2 Function Approximation

Real-world problems often consist of large or continuous state and action spaces.

A deep neural network may be used to approximate a state value function Vθ(s) ≈
Vπ(s), a state–action value function Qθ(s, a) ≈ Qπ(s, a), or to approximate a

policy pθ(a|s), where θ denotes the network parameters. The neural networks are

then optimized by stochastic gradient descent (SGD) as described in Chapter 3.

12.2.1 State Value Function Approximation

Our goal is to find the neural network parameters θ that minimize the mean

squared error (MSE) between a value function Vπ(s) with respect to a policy π

such as the optimal policy, and the neural network approximation Vθ(s):

J(θ) =
1

2
Es

[

(Vπ(s)− Vθ(s))
2
]

(12.1)

Computing the expectation over states s ∈ S results in:

J(θ) =
1

2|S|
∑

s∈S

(

(Vπ(s)− Vθ(s))
2
)

(12.2)

However, since there may be too many states, we may wish to focus on learning

states which are visited multiple times. Therefore, under policy π we may spend

time μ(s) in state s and therefore compute the expectation as:

J(θ) =
∑

s∈S
μ(s)

(

(Vπ(s)− Vθ(s))
2
)

(12.3)
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where
∑

s∈S μ(s) = 1.

The optimization objective J(θ) is a differentiable function of the network

parameters θ. The gradient of J(θ) with respect to θ is the vector ∇θJ(θ) =

(∂θ
θ1
, . . . , ∂θ

θn
)T defined by:

∇θJ(θ) = −Es [(Vπ(s)− Vθ(s))∇θVθ(s)] (12.4)

Optimization by gradient descent involves updating θ in the direction of the

negative gradient by:

Δθ = α∇θJ(θ) = αEs [(Vπ(s)− Vθ(s))∇θVθ(s)] (12.5)

where α is the learning rate, and the optimization starts from an initial guess

θ0. The sequence of parameter values {θi}:

θi+1 = θi − α∇θJ(θi) (12.6)

where i = 1, . . . , n are a sequence of monotonically non-increasing values of the

objective J(θ0) ≥ J(θ1) ≥ · · · ≥ J(θn) that converge toward a local minimum.

Using SGD we approximate the gradient using a single random sample at a time

such that:

Δθ = α∇θJ(θ) = α(Vπ(s)− Vθ(s))∇θVθ(s) (12.7)

Since we do not know the ground-truth value function Vπ(s) we may use an

estimate instead, such as the return g ≈ Vπ(s) in Monte Carlo (MC) learning to

approximate the value function with respect to π, updating the parameters by:

Δθ = α (g − Vθ(s))∇θVθ(s) (12.8)

or use the temporal difference (TD) target r + γVθ(s
′) ≈ Vπ(s) in TD learning,

updating the parameters by:

Δθ = α (r + γVθ(s
′)− Vθ(s))∇θVθ(s) (12.9)

Since the TD target is a biased sample of the ground-truth value Vπ(s), we may

use the states and targets to form a training set of {(s, r + γVθ(s))} pairs and

then proceed by supervised learning.

12.2.2 Action Value Function Approximation

In action value function approximation the neural network inputs are the states

s and actions a and the network parameterized by θ outputs a value Qθ(s, a).

In a similar fashion to state value function approximation, our objective may

be minimizing the MSE between the approximate action value function Qθ(s, a)

and the action value function Qπ(s, a) with respect to a policy π, such as the

optimal policy:

J(θ) =
1

2
E(s,a)∼π

[

(Qπ(s, a)−Qθ(s, a))
2
]

(12.10)
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where the expectation is over (s, a) pairs from the policy π. The optimization

objective J(θ) is a differentiable function of the network parameters θ. The gra-

dient of J(θ) with respect to θ is the vector ∇θJ(θ) = (∂J
θ1
, . . . , ∂J

θn
)T defined

by:

∇θJ(θ) = −E(s,a)∼π [(Qπ(s, a)−Qθ(s, a))∇θQθ(s, a)] (12.11)

Optimization by gradient descent involves updating θ in the direction of the

negative gradient by:

Δθ = −α∇θJ(θ) = α(Qπ(s, a)−Qθ(s, a))∇θQθ(s, a) (12.12)

Since again we don’t know the true action value function Qπ we may use an

estimate instead based on the return g ≈ Qπ(st, at) in MC learning:

Δθ = α (g −Qθ(s, a))∇θQθ(s, a) (12.13)

or use the TD target r+γQθ(s
′, a′)−Qθ(s, a) ≈ Qπ(s, a) in TD learning, updating

the parameters by:

Δθ = α (r + γQθ(s
′, a′)−Qθ(s, a))∇θQθ(s, a) (12.14)

Challenges of function approximation in the reinforcement learning setting

include that (1) the agent’s experience is not independent and identically dis-

tributed (IID); (2) the agent’s policy affects the future data it will sample; and

(3) the environment may change. In addition, methods that use function ap-

proximation along with bootstrapping and off-policy learning may not converge.

Next, we describe deep reinforcement learning methods that attempt to overcome

these challenges.

We will describe model-free approaches which may be divided into (1) value-

based or Q-learning methods such as NFQ (Riedmiller, 2005) and DQN (Mnih

et al., 2015); (2) policy-based or policy optimization methods such as PPO

(Schulman et al., 2017); and (3) actor–critic methods such as DDPG (Lillicrap

et al., 2016), which are a combination of (1) and (2).

12.3 Value-Based Methods

Value-based methods for deep reinforcement learning approximate the state value

function or the action value function using a neural network.

12.3.1 Experience Replay

In supervised learning the training examples may be sampled independently from

an underlying distribution. In contrast, in reinforcement learning the states, ac-

tions, and rewards that an agent learns from experience in successive time steps

are correlated in time. A solution to this problem, known as experience replay,
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is to use a replay buffer that stores previous states, actions, and rewards, specif-

ically storing tuples of (s, a, r, s′), and then sample from the replay buffer when

updating the Q values. Using a replay buffer may avoid catastrophic forgetting

of the state and action spaces. Each experience tuple may be used for updating

the network weights multiple times, which is an efficient use of the data. Ran-

dom uniform sampling from the replay buffer reduces variance and the temporal

correlations between episodes.

12.3.2 Neural Fitted Q-Iteration

In action value function approximation we minimized the MSE loss between the

approximate action value functionQθ(s, a) and the action value function Qπ(s, a)

with respect to a policy π. Q-learning converges to Q⋆ using a table lookup.

Therefore we will minimize the MSE loss between the approximate action value

function Qθ(s, a) and the optimal action value function Q⋆(s, a) by minimizing

the loss:

J(θ) =
1

2
E(s,a)∼π

[

(Q⋆(s, a)−Qθ(s, a))
2
]

(12.15)

Again, optimization by gradient descent involves updating θ in the direction of

the negative gradient by:

Δθ = α(Q⋆(s, a)−Qθ(s, a))∇θQθ(s, a) (12.16)

Since we don’t know the optimal action value function we may approximate

Q⋆(s, a) by:

r + γmax
a′

Qθ(s
′, a′) ≈ Q⋆(s, a) (12.17)

updating the network parameters by:

Δθ = α
(

r + γmax
a′

Qθ(s
′, a′)−Qθ(s, a)

)

∇θQθ(s, a) (12.18)

Just using a neural network to approximate the action value function in Q-

learning may diverge since there are correlations between the samples and the

target is non-stationary. Therefore, to remove the correlations between sam-

ples we may generate a dataset from the agent’s experience. Neural fitted Q-

iteration (NFQ; (Riedmiller, 2005)) and Batch-Q (Ernst et al., 2005) methods

store batches of data in a buffer D and use supervised learning with a neural

network to learn the action value function.

This results in the neural fittedQ-iteration pseudocode described in Algorithm

12.1.

12.3.3 Deep Q-Network

Deep Q-Network (DQN) (Mnih et al., 2015) builds upon fitted Q-learning by

incorporating a replay buffer and a second target neural network, as described

next.
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Algorithm 12.1 Neural fitted Q-iteration (NFQ).

initialize D = ∅ empty replay buffer

Qθ network parameters θ with random values

select start state s = s0
repeat:

for k steps do:

run ε-greedy policy based on Qθ network

collect transitions (s, a, r, s′) into D+

D = D ∪D+

create supervised training set S = {(x(i), y(i))}
for each (s, a, r, s′) ∈ D do:

x(i) = (s, a)

y(i) = r + γmaxa′ Qθ(s
′, a′)

retrain Q network by supervised learning on S

12.3.4 Target Network

In NFQ we set y(i) = r + γmaxa′ Qθ(s
′, a′), whereas in DQN we set y(i) =

r + γmaxa′ Qθ−(s′, a′), where θ− are parameters of a target network. At each

iteration, DQN minimizes the MSE loss:

L(θi) = E(s,a,r,s′)∼Di

[

(y(i) −Qθi(s, a))
2
]

(12.19)

= E(s,a,r,s′)∼Di

[

(r + γmax
a′

Qθ−(s′, a′)−Qθi(s, a))
2
]

(12.20)

The parameters θ− of the target network Qθ−(s′, a′) are frozen for multiple steps

while the parameters θi of the online network Qθi(s, a) are updated by SGD:

∇θiL(θi) = E(s,a,r,s′)∼Di

[

(y(i) −Qθi(s, a))∇θiQθi(s, a)
]

(12.21)

= E(s,a,r,s′)∼Di

[

(r + γmax
a′

Qθ−(s′, a′)−Qθi(s, a))∇θiQθi(s, a)
]

(12.22)

12.3.5 Algorithm

Deep Q-Network uses experience replay and a target network. States and rewards

are generated by the environment and therefore the algorithm is model-free. The

states and rewards are generated by an ε-greedy behavior policy that is different

from the online policy learned and therefore the algorithm is off-policy. The DQN

algorithm is described in pseudocode in Algorithm 12.2.

12.3.6 Prioritized Replay

Instead of sampling from the replay buffer uniformly, prioritized experience re-

play (Schaul et al., 2016) samples important transitions more frequently, which
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Algorithm 12.2 Deep Q-network (DQN).

initialize D = ∅ empty replay buffer

online Qθ network with parameters θ with random values

target Qθ− network with parameters θ− = θ

start state s = s0
repeat:

for each episode do:

run ε-greedy policy based on Qθ network

collect transitions (s, a, r, s′) into D
q = Qθ(s, a)

take action a to get reward r and next state s′

Qθ(s, a) = Qθ(s, a) + α (r + γmaxa′ Qθ−(s′, a′)−Qθ(s, a))

Δ = max{Δ, ‖q −Qθ(s, a)‖}
s = s′

update θ− = θ every number of episodes

results in more efficient learning. We store the experiences in a priority queue

by their DQN error |r+ γmaxa′ Qθ−(s′, a′)−Qθ(s, a)| and prioritize samples by
pα
i∑
j pα

j

where pi is proportional to the DQN error, and α controls the amount of

prioritization such that setting α = 0 results in no prioritization.

12.3.7 Double DQN

A problem with DQN is that the maximum operator uses the same values for

both selecting and evaluating an action, which may result in a higher value.

For example, given a state with ground truth Q⋆(s, a) = 0 the estimates of

Q(s, a) may be positive or negative such that Q

(

s, argmax
a

Q(s, a)

)

> 0 whereas

Q⋆

(

s, argmax
a

Q⋆(s, a)

)

= 0. A solution, called double DQN (Van Hasselt et al.,

n.d.), replaces the DQN target:

y(i) = r + γmax
a′

Qθ−(s′, a′) (12.23)

with:

y(i) = r + γQθ−

(

s′, argmax
a′

Qθi(s
′, a′)

)

(12.24)

such that the current Q-network with parameters θi are used to select actions

whereas the previous Q-network with parameters θ− are used to evaluate actions.

12.3.8 Dueling Networks

Dueling network architectures for deep reinforcement learning (Wang et al., 2016)

use two separate neural networks. One network approximates the state value
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function V (s), and a second network approximates the state–action advantage

function Aπ(s, a). The advantage function is the difference between the state–

action value function and state value function:

Aπ(s, a) = Qπ(s, a)− Vπ(s), (12.25)

The advantage function is a relative measure of the importance of each action,

comparing each action to the average action of the policy. The expectation of

the advantage function over all actions is zero Ea∼π(s)[Aπ(s, a)] = 0.

12.4 Policy-Based Methods

Stochastic policy functions may output a distribution over a discrete set of ac-

tions, or may be continuous such that a ∼ N (μθ(s), σ
2
θ(s)). Policy-based methods

work well in continuous spaces for learning stochastic policies.

An agent that interacts with the environment generates a trajectory τ of state,

action and reward episodes τ = s0, a0, r0, . . . , st, at, rt. The return g(τ) of a tra-

jectory τ is the discounted sum of rewards g(τ) =
∑

t γ
trt. The goal or objective

of policy-based methods J(πθ) is to find a policy πθ parameterized by θ that

maximizes the expected return over all trajectories τ ∼ πθ sampled from the

policy. The objective J(πθ) is defined by:

J(πθ) = Eτ∼πθ
[g(τ)] = Eτ∼πθ

[

∑

t

γtrt

]

(12.26)

and taking the maximum over θ results in:

max
θ

J(πθ) = max
θ

Eτ∼πθ

[

∑

t

γtrt

]

(12.27)

We maximize J(πθ) by gradient ascent on the policy parameters θ, updating the

parameters by:

θ = θ + α∇θJ(πθ) (12.28)

where α is a learning rate and ∇θJ(πθ) is the policy gradient.

The expectation with respect to the trajectory τ of the return g(τ) is:

J(πθ) = Eτ∼πθ
[g(τ)] =

∑

τ

p(τ |θ)g(τ) (12.29)

where p(τ |θ) is the probability of a trajectory when following policy π parame-

terized by θ:

p(τ |θ) =
∏

t

p(st+1|st, at)πθ(at|st) (12.30)

and our goal is to compute the gradient of the expectation with respect to the

parameters θ:

∇θJ(πθ) = ∇θEτ [g(τ)] (12.31)
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We assume that p(τ |θ) is a differentiable probability density function that we

may sample from.

12.4.1 Policy Gradient

By definition of expectation, taking the gradient of Equation 12.26, and then

bringing in the gradient, the policy gradient is:

∇θJ(πθ) = ∇θEτ∼πθ
[g(τ)] = ∇θ

∫

τ

g(τ)p(τ |θ) dτ =

∫

τ

∇θg(τ)p(τ |θ) dτ (12.32)

Using the chain rule we get:

∇θJ(πθ) =

∫

τ

∇θg(τ)p(τ |θ) dτ =

∫

τ

(g(τ)∇θp(τ |θ) + p(τ |θ)∇θg(τ)) dτ,

(12.33)

and setting ∇θg(τ) = 0, and then multiplying by p(τ |θ)
p(τ |θ) results in:

∇θJ(πθ) =

∫

τ

g(τ)∇θp(τ |θ) dτ =

∫

τ

g(τ)p(τ |θ)∇θp(τ |θ)
p(τ |θ) dτ (12.34)

Since log(x)′ = 1
x
, we replace ∇θ log p(τ |θ) = ∇θp(τ |θ)

p(τ |θ) , and then by the definition

of expectation we get:

∇θJ(πθ) =

∫

τ

g(τ)p(τ |θ)∇θ log p(τ |θ) dτ = Eτ∼πθ
[g(τ)∇θ log p(τ |θ)] (12.35)

The probability p(τ |θ) of a trajectory τ given parameters θ may be repre-

sented using the policy πθ(a|s) and the transition probabilities of the environ-

ment p(s′|s, a). In state s the agent takes an action a with probability based on

the policy, and then the environment transitions the agent to state s′ based on

the state s and the agent’s action a, and this process continues over all time

steps; therefore:

p(τ |θ) =
∏

t

p(st+1|st, at)πθ(at|st), (12.36)

where the product is over time steps. Taking the logarithm allows us to turn the

product into a sum:

log p(τ |θ) =
∑

t

(log p(st+1|st, at) + log πθ(at|st)) (12.37)

Taking the gradient with respect to θ and noticing that the environment transi-

tion probabilities are independent of θ results in:

∇θ log p(τ |θ) = ∇θ

∑

(log p(s′|s, a) + log πθ(a|s)) = ∇θ

∑

log πθ(a|s) (12.38)

Now, plugging Equation 12.38 into Equation 12.35 and then bringing the return

g(τ) into the sum results in the expectation:

∇θJ(πθ) = Eτ∼πθ
[g(τ)∇θ log p(τ |θ)] = Eτ∼πθ

[

∑

t

gt(τ)∇θ log πθ(at|st)
]

(12.39)
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which is a differentiable function and may be estimated by a sample mean.

12.4.2 REINFORCE

The REINFORCE algorithm estimates the policy gradient numerically by MC

sampling, using random samples to approximate the policy gradient. For each

episode we sample a new trajectory τ . Next, for each time step t we compute the

return gt, and sum the policy gradients over all time steps to get ∇θJ(πθ). The

contribution of each time step to the policy gradient is the return gt times the

score ∇θ log πθ(at|st) which both depend on the current policy πθ, and there-

fore REINFORCE is an on-policy algorithm. Finally, we update the network

parameters θ using the policy gradient ∇θJ(πθ). The REINFORCE pseudocode

is described in Algorithm 12.3.

Algorithm 12.3 REINFORCE.

initialize learning rate α, parameters θ of policy network πθ

repeat for each episode:

sample trajectory τ = s0, a0, r0, . . . , sT , aT , rT following πθ

∇θJ(πθ) = 0

for each time step t = 0, . . . , T do:

gt(τ) =
∑T

i=t γ
i−trt

update policy gradient ∇θJ(πθ) = ∇θJ(πθ) + gt(τ)∇θ log πθ(at|st)
update policy parameters θ = θ + α∇θJ(πθ)

12.4.3 Subtracting a Baseline

The estimate of the gradient, given by:

ĝ =
1

n

n
∑

i=1

∇θ log pθ(τ
(i))g(τ) (12.40)

accurately approximates the true gradient for many samples i = 1, . . . , n. To

reduce the variance we may subtract a baseline b from the return such that:

ĝ =
1

n

n
∑

i=1

∇θ log pθ(τ
(i))(g(τ)− b) (12.41)

=
1

n

n
∑

i=1

∇θ log pθ

(

τ (i)
)

g(τ)− 1

n

n
∑

i=1

∇θ log pθ(τ
(i))b (12.42)
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where the expectation of the term on the right is zero:

∑

τ

pθ(τ)∇θ log pθ(τ)b =
∑

τ

pθ(τ)
∇θpθ(τ)

pθ(τ)
b (12.43)

= b
∑

τ

∇θpθ(τ) = b∇θ

∑

τ

pθ(τ) = 0 (12.44)

The baseline may be a constant b = E[g(τ)], dependent on time bt =
∑n

i=1 g
i
t, or

a function of state b(s) = Vπ(s).

12.5 Actor–Critic Methods

Actor–critic methods combine policy-based methods with value-based methods

by using both the policy gradient and value function. The actor is a policy

network πθ with parameters θ mapping states to action probabilities. The critic

is a value network Vφ(s) or Qφ(s, a) or Aφ(s, a) with parameters φ approximating

a state value function or action value function or advantage function. Putting

these two networks back-to-back, the critic provides a loss function for the actor

and the gradients backpropagate from the critic to the actor.

In the policy-based REINFORCE algorithm we estimated the policy gradient

∇θJ(πθ) by randomly sampling one trajectory at a time. This trajectory results

in a return that may be significantly different from returns of other trajectories

and therefore the policy gradient has high variance. We may use value function

approximation to reduce this variance. Specifically, in REINFORCE we estimate

the policy gradient by:

∇θJ(πθ) = Eτ∼πθ

[

∑

t

gt(τ)∇θ log πθ(at|st)
]

(12.45)

To reduce variance we may replace the return g(τ) times the score∇θ logπθ(at|st),
with a value function approximation Qφ(s, a) times the score, which results in

the Q-value actor–critic algorithm. Alternatively, we may use the estimate Vφ(s)

as a baseline computing the action advantage function A(s, a) = g(τ)− Vφ(s).

The actor–critic pseudocode is shown in Algorithm 12.4. We first initialize the

policy parameters θ and critic parameters φ. Next, we repeatedly perform the

following steps: (1) sample trajectory τ = {st, at}t using the current policy πθ;

(2) fit a value function Vφ(s) using MC or TD learning and update critic param-

eters φ; (3) compute the action advantage function Aφ(st, at) = gt − Vφ(st); (4)

approximate the policy gradient ∇θJ(πθ); and (5) update the policy parameters

θ.
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Algorithm 12.4 Actor–critic.

initialize learning rate α, actor policy parameters θ and critic parameters φ

for each episode do:

sample trajectory τ = s0, a0, r0, . . . , sT , aT , rT following πθ

fit value function Vφ(s) using MC or TD learning

update critic parameters φ

compute action advantage function Aφ(st, at)

approximate policy gradient ∇θJ(πθ)

update policy parameters θ = θ + α∇θJ(πθ)
=0

12.5.1 Advantage Actor–Critic

Advantage actor–critic (A2C) methods (Mnih et al., 2016) estimate the policy

gradient based on an approximation of the advantage function:

∇θJ(πθ) = Eτ∼πθ

[

∑

t

∇θ log πθ(at|st)γt−1Aφ(st, at)

]

(12.46)

where the advantage function is defined by:

Aφ(s, a) = Er,s′ [r + γVπθ
(s′)− Vπθ

(s)] (12.47)

The critic estimates (r+γVπθ
(s′)−Vπθ

(s)) by the TD error (r + γVφ(s
′)− Vφ(s))

where Vφ is an estimate of the value function Vπθ
, and the gradient of the actor

(Schulman et al., 2016) is estimated by:

∇θJ(πθ) = Eτ∼πθ

[

∑

t

∇θ log πθ(at|st)γt−1 (r + γVφ(st+1)− Vφ(st))

]

(12.48)

by rolling out trajectories. Generalized advantage estimation (GAE) approxi-

mates the advantage by:

Aθ(s, a) = E

[

∑

t

(λγ)t−1(rt + γVφ(st+1)− Vφ(st))

]

(12.49)

where λ trades-off bias and variance.

12.5.2 Asynchronous Advantage Actor–Critic

In order for neural network training to be stable, the gradient updates should

not be correlated, which is why experience replay is used in DQN. An alternative

that does not use a replay buffer is to parallelize the experiences using multiple

threads, and therefore not be limited to off-policy methods and able to use

data from the current policy to improve the policy. Asynchronous advantage

actor–critic (A3C) (Mnih et al., 2016) explores different parts of the environment

using multiple agents that contribute experiences in parallel. The agents may be
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trained using diverse policy gradient methods and may use diverse exploration

values of ε. In A3C, each agent is reset to a global network which may have diverse

policies or critics. Next, the agents interact with the environment, computing the

value, policy loss, and gradients. Finally, the agents update the global network

with the gradients, and the process is repeated. The gradient updates may be

performed asynchronously, or applied synchronously by averaging the gradients

from all agents and updating the global network parameters.

12.5.3 Importance Sampling

Given a function f(x), computing the expectation Ep(x)[f(x)] from a distribution

P may be difficult, and therefore importance sampling allows sampling from a

different distribution Q:

EP (x)[f(x)] = EQ(x)

[

P (x)

Q(x)
f(x)

]

(12.50)

and reweighting the samples.

Importance sampling may be used to estimate the expected return of a stochas-

tic policy by turning:

J(πθ) = Eτ∼πθ
[P (τ |θ)r(τ)] (12.51)

into a surrogate loss:

J(πθ) = Eτ∼πθ′

[

P (τ |θ′)
P (τ |θ) r(τ)

]

(12.52)

such that the gradient is:

∇θJ(πθ) = Eτ∼πθ′

[∇θ′P (τ |θ′)
P (τ |θ) r(τ)

]

(12.53)

which allows collecting data from an old policy parameterized by θ and com-

puting the direction in which the new policy parameterized by θ′ should be

improved. For θ′ = θ this reduces to policy gradient.

12.5.4 Surrogate Loss

Policy gradient reinforcement learning algorithms rely on updating a policy by

modifying its parameters. If this modification results in a poor policy then this

will result in poor samples from that policy so that altogether the reinforcement

learning algorithm may become stuck with poor policies and subsequent samples.

To overcome this problem we may add a constraint to the reinforcement learn-

ing objective that encourages the policy to improve while avoiding deteriorating

performance. Trust region policy optimization (TRPO) and proximal policy op-

timization (PPO) add a constraint to the optimization objective, encouraging

consecutive policies to improve monotonically. These algorithms differ in the im-

plementation of this constraint: TRPO implements a second-order constraint,

whereas PPO implements a simpler first-order constraint.
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12.5.5 Natural Policy Gradient

In reinforcement learning the dataset collected depends on the policy and when

using neural networks depends on the network parameters. Therefore, when op-

timizing policy-based methods, choosing a step size for updating the policy pa-

rameters is key. If the step size is too large then that will result in a bad policy,

which in turn will result in collecting bad data under that policy from which the

agent may not recover. If the step size is too small then that will result in not

using the experience efficiently.

Taking gradient steps in the parameter space θ of a policy network πθ is defined

by:

Δθ = θ′ − θ = α∇θJ(πθ) (12.54)

Using the first-order Taylor expansion of the objective J(πθ′) ≈ J(πθ) +

∇θJ(πθ)
TΔθ we may constrain the gradient step using the term dependent on

θ′ by a threshold ε on the ℓ2 norm of Δθ:

maximize
θ′

∇θJ(πθ)
TΔθ s.t.

1

2
ΔθT IΔθ = ‖Δθ‖22 ≤ ε (12.55)

which has an analytic solution:

Δθ =
√
2ε

∇θJ(πθ)

‖∇θJ(πθ)‖
(12.56)

Directly constraining Δθ does not consider the corresponding distance in the

policy space between πθ′ and πθ. Therefore, we may constrain the distribution

over policy trajectories based on the Kullback–Leibler (KL) divergence between

the old distribution πθ and new distribution πθ′ such that DKL(πθ||πθ′) ≤ ε. The

natural policy gradient (NPG) constrains the objective function to be subject to

E [DKL(πθ(·|st)||πθ′(·|st)] ≤ ε. Computing the second-order Taylor expansion of

the KL results in the objective:

maximize
θ′

∇θJ(πθ)
TΔθ s.t.

1

2
ΔθTFθΔθ ≤ ε (12.57)

where Fθ is the Fisher information matrix (Kakade, 2001), defined as:

Fθ = Eτ∼πθ

[

∇ log p(τ |θ)∇ log p(τ |θ)T
]

(12.58)

and has an analytic solution:

Δθ = F−1
θ ∇θJ(πθ)

√

2ε

∇θJ(πθ)TF
−1
θ ∇θJ(πθ)

(12.59)

which results in the natural gradient (Amari, 1998) gN such that Δθ = αgN and

∇θJ(πθ) and Fθ may be approximated by sampling trajectories using conjugate

gradient descent (Kakade, 2001).
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12.5.6 Trust Region Policy Optimization

The policy gradient approach uses a step size and gradient to update the policy

parameters, which is a first-order approximation. In contrast, TRPO (Schulman

et al., 2015) is a second-order method that uses the conjugate gradient to avoid

computing the inverse of the Hessian. In supervised learning, using a step size

which is too large may be corrected for in following iterations; however, in re-

inforcement learning it may result in a bad policy that will result in poor data

collection and will be difficult to recover from. Therefore, selecting a good step

size is important in policy gradient approaches. Using line search for selecting

an optimal step size would require performing multiple rollouts for different step

sizes, which is computationally expensive. Instead, we use the NPG approach

to constrain the surrogate loss by the KL divergence between the new and old

policy, which results in a second-order method:

θ⋆ = argmax
θ

L(πθ, πθ′) s.t. DKL(P (τ ; θ)||P (τ ; θ′)) ≤ ε (12.60)

where:

L(πθ, πθ′) = E

[

πθ′(a|s)
πθ(a|s)

Aθ(s, a)

]

(12.61)

Plugging in

P (τ ; θ) = P (s0)
∏

t

πθ(at|st)P (st+1|st, at) (12.62)

to the KL divergence:

DKL(P (τ ; θ)||P (τ ; θ′)) =
∑

τ

P (τ ; θ) log
P (τ ; θ′)
P (τ ; θ)

(12.63)

we get:

DKL(P (τ ; θ)||P (τ ; θt)) =
∑

τ

P (τ ; θ) log
P (s0)

∏

t πθ′(at|st)P (st+1|st, at)
P (s0)

∏

t πθ(at|st)P (st+1|st, at)
(12.64)

and canceling out the dynamics yields:

DKL(P (τ ; θ)||P (τ ; θ′)) =
∑

τ

P (τ ; θ) log

∏

t πθ′(at|st)
∏

t πθ(at|st)
(12.65)

and sampling from the new policy:

DKL(P (τ ; θ)||P (τ ; θ′)) ≈ 1

n

∑

(a,s)∼πθ′

log
πθ′(a|s)
πθ(a|s)

(12.66)

resulting in the constrained optimization or surrogate objective:

maximize
θ

E

[

πθ′(a|s)
πθ(a|s)

Aθ(a, s)

]

s.t. E [DKL(πθ(·|s)||πθ′(·|s))] ≤ ε (12.67)

A high-level TRPO pseudocode is described in Algorithm 12.5.
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Algorithm 12.5 Trust region policy optimization.

initialize learning rate α, parameters θ of policy network πθ

for each episode do:

sample trajectory τ = s0, a0, r0, . . . , sT , aT , rT following πθ

estimate advantage function at all time steps

compute policy gradient g

use conjugate gradient to compute F−1g

F is the Fisher information matrix

perform line search on the surrogate loss and KL constraint

12.5.7 Proximal Policy Optimization

Trust region policy optimization requires solving a second-order optimization

problem. Proximal policy optimization (Schulman et al., 2017) is based on TRPO;

however, it is a first-order method that avoids computing the Hessian matrix or

line search by clipping the surrogate objective. It clips the TRPO surrogate ob-

jective in Equation 12.67 around 1 ± δ and takes the minimum of the original

and clipped objectives resulting in the PPO surrogate objective:

maximize
θ

E

[

min

(

πθ′(a|s)
πθ(a|s)

Aθ(s, a), clip

(

πθ′(a|s)
πθ(a|s)

, 1− δ, 1 + δ

)

Aθ(s, a)

)]

(12.68)

s.t. E [DKL(πθ(·|s)||πθ′(·|s))] ≤ ε (12.69)

A high-level PPO pseudocode is described in Algorithm 12.6.

Algorithm 12.6 Proximal policy optimization.

initialize policy πθ parameters θ

for each episode do:

run old policy πθ

compute advantage estimates Aθ

optimize surrogate objective in Eq. 12.68 with respect to θ

update policy parameters

12.5.8 Deep Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) Lillicrap et al. (2016) may be used

in continuous action spaces and combines DQN with REINFORCE. It uses an

action value critic Qφ(s, a) parameterized by φ and a deterministic policy πθ(s)

parameterized by θ. In a similar fashion to actor–critic methods, we perform

gradient descent to minimize the loss function with respect to the parameters

φ of the critic and gradient ascent to find the parameters θ that maximize the
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actor objective. The critic loss is defined by:

L(φ) = 1

2
E(s,a,r,s′)

[

(r + γQφ(s
′, πθ(s

′))−Qφ(s, a))
2
]

(12.70)

and the gradient as:

∇φL(φ) = E(s,a,r,s′) [(r + γQφ(s
′, πθ(s

′))−Qφ(s, a))

(γ∇φQφ(s
′, πθ(s

′))−∇φQφ(s, a))
(12.71)

The actor loss is defined by:

J(θ) = Es[Qφ(s, πθ(s))] (12.72)

In practice DDPG uses experience replay to improve stability and adding Gaus-

sian noise to the actions of the policy πθ improves exploration. The DDPG

pseudocode is described in Algorithm 12.7.

Algorithm 12.7 Deep deterministic policy gradient.

initialize policy parameters θ of an actor πθ and action value parameters φ

of a critic network Qφ

for each episode do:

given initial state s

for each time step do:

select action a according to policy network πθ(a|s)
execute action a and observe reward r and next state s′

store tuple (s, a, r, s′) in buffer D = D ∪ (s, a, r, s′)
sample mini-batch of tuples from buffer (si, ai, ri, s′i) ∈ D
update critic by minimizing loss in Eq. 12.70 over sampled tuples

update actor policy using sampled policy gradients

update actor and critic network parameters

12.6 Model-Based Reinforcement Learning

Model-based reinforcement learning approaches may be divided into methods

that are given the model, such as AlphaZero (Silver et al., 2018), and methods

that learn the model, such as world models (Ha and Schmidhuber, 2018).

12.6.1 Monte Carlo Tree Search

Search trees have been used in board games such as chess (Arenz, 2012). A

key problem with these search algorithms is that their branching factor grows

exponentially with the number of units or pieces in the game. A simple forward

search has exponential time complexity of O((|S||A|)d) for a state set S, action
set A and tree depth d. The set of states may be reduced by sampling a subset of
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states, though still has an exponential time complexity. Branch-and-bound uses

a lower bound on the value function and an upper bound on the action value

function to prune branches of the search tree, though still has an exponential

time complexity in the worst case. In contrast, Monte Carlo tree search (MCTS)

runs simulations from a given state and therefore has time complexity of O(nd),

where n is the number of simulations and d the tree depth.

The MCTS algorithm selects actions based on the upper confidence bound

(UCB):

Q(s, a) + c

√

logN(s)

N(s, a)
(12.73)

where Q(s, a) is the action value function, c is an exploration constant, N(s, a)

is the number of action–state pairs, and N(s) =
∑

a N(s, a) is the number of

state visits.

Algorithm 12.8 Monte Carlo tree search.

initialize start state s, action value function Q(s, a), number of state visits

N(s), number of state–action pairs N(s, a)

for each simulation do:

sample trajectory τ following π

update policy parameters θ = θ + α∇θJ(πθ)

12.6.2 Expert Iteration and AlphaZero

Model-based reinforcement learning (Feinberg et al., 2018) has given rise to ex-

pert iteration (Anthony et al., 2017), which iterates between dual policies of a

deep neural network and MCTS, applied to the game of Hex, followed by Alp-

haZero (Silver et al., 2017, 2018), which adds self-play, applied to chess, Shogi,

and Go. The MCTS hyperparameters are tuned using Bayesian optimization

(Chen, Huang, Wang, Antonoglou, Schrittwieser, Silver and de Freitas, 2018).

Initially devised for two-player competitive board games such as Hex, Go, chess,

and Shogi, expert iteration and AlphaZero have been extended to single-player

games using a sequence model for automatic machine learning (Drori, Krishna-

murthy, Rampin, Lourenco, One, Cho, Silva and Freire, 2018) in a system called

AlphaD3M, which automatically synthesizes solution machine learning pipelines

for a given dataset and task. The single-player extension has been used for solv-

ing the Rubik’s Cube (McAleer et al., 2018) using a training set generated by

scrambling the solution. These methods have also been generalized to continu-

ous domains (Moerland et al., 2018) for control with applications in robotics and

self-driving cars for good sequential decision-making.

Expert iteration, or AlphaZero, uses a neural network to output a policy ap-

proximation πθ(a|s) and state value function V (s) approximation for guiding
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MCTS. Originally, two separate networks were used, which were merged into a

single network fθ(s) that receives a state representation as input s and computes

a vector of probabilities pθ = P (a|s) over all valid actions a and state values Vθ(s)

over states s. AlphaZero learns these action probabilities and estimated values

from games of self-play, which guide the search in future games. The parameters

θ are updated by SGD on the following loss function:

L(θ) = −π log p+ (V − e)2 + α‖θ‖2 (12.74)

maximizing cross entropy between policy vector p and search probabilities π,

minimizing the MSE between predicted performance v and actual evaluation e,

and regularizing the network parameters θ to avoid overfitting. AlphaZero uses

MCTS which is a stochastic search using a UCB update rule of the action value

function:

U(s, a) = Q(s, a) + cP (a|s)
√

N(s)

1 +N(s, a)
(12.75)

where Q(s, a) is the expected reward for action a from state s, N(s, a) is the

number of times action a was taken from state s, P (a|s) is the estimate of

the neural network for the probability of taking action a from state s and c

is a constant that determines the amount of exploration. At each step of the

simulation, we find the action a and state s which maximize U(s, a) and add

the new state to the tree, if it does not exist, with the neural network estimates

P (a|s), V (s), or call the search recursively. Finally, the search terminates and

action is taken.

12.6.3 World Models

World models (Ha and Schmidhuber, 2018) are an example of model-based re-

inforcement learning in which the model is not given. A world model is a neural

game simulator that uses a variational autoencoder (VAE) and recurrent neural

network (RNN) to take action in an environment. The VAE is trained on images

from the environment, learning a low-dimension latent representation z of state

s. The RNN is trained on the VAE latent vectors zt through time, predicting

p(zt+1|at, zt, ht). The latent vector zt and RNN hidden vector ht are fed into a

neural network controller that outputs an action that affects the environment,

resulting in a new image or state st that is fed back to the VAE. Since the world

model also predicts the next latent space vector it may be used to synthesize

images of the environment, creating a neural simulation of the environment. The

world model may then be trained within that simulation; however, the agent

needs to sample new data from the environment by exploration in order to learn

new regions of the state and action spaces.



248 12 Deep Reinforcement Learning

12.7 Imitation Learning

Rather than learning from rewards, imitation learning learns from example demon-

strations provided by an expert. Behavioral cloning uses supervised learning to

find parameters θ of a policy πθ by computing the maximum log-likelihood:

θ⋆ = argmax
θ

∑

(s,a)∈D
log πθ(a|s) (12.76)

where D are expert demonstrations and the policy πθ may be a neural network.

A limitation of behavioral cloning is that it performs poorly near boundary states

that are not well represented by the demonstrations, and once encountered may

not recover from cascading errors.

Dataset aggregation (DAgger) (Ross et al., 2011) aims to solve the problem

of cascading errors by augmenting the data with expert action labels of pol-

icy rollouts. DAgger iteratively aggregates additional correctly labeled data and

retrains the policy. Stochastic mixing iterative learning (SMILe) (Ross and Bag-

nell, 2010) trains a new policy only on the augmented data and then mixes the

new policy with the previous policies by having the agent act according to each

new policy πi with probability p(p− 1)i.

Generative adversarial imitation learning (GAIL) (Ho and Ermon, 2016) uses

state and action examples (s, a) ∼ Preal from expert demonstrations as real

samples for a discriminator in a GAN setting, as described in Chapter 9. The

generator learns a policy πθ(a|s) by generating actions from states, and these

(a, πθ(s)) pairs are input to a discriminator. The discriminator’s Dφ goal is to

distinguish between expert demonstration pairs (s, a) ∼ Preal and pairs syn-

thesized by the generator (s, πθ(s)). The generator may learn a policy, such as

TRPO, using the discriminator’s feedback as a reward.

Inverse reinforcement learning explicitly derives a reward function from a set of

expert demonstrations and uses that reward to learn an optimal policy. Maximum

entropy inverse reinforcement learning (Ziebart et al., 2008) prefers a distribution

over policy trajectories τ of the form:

Pθ(τ) =
exp (Rθ(τ))

∑

τ exp (Rθ(τ))
(12.77)

where θ are the parameters of the reward function Rθ(τ) and Pθ(τ) is the prob-

ability of a trajectory τ . In a similar fashion to Equation 12.76 we may find the

best parameter θ⋆ by computing the maximum log-likelihood:

θ⋆ = argmax
θ

(

∑

τ∈D
logPθ(τ)

)

(12.78)

where D is a set of expert demonstrations.
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12.8 Exploration

Chapter 11 described ε-greedy, which is a simple approach that promotes explo-

ration by taking a random action with probability ε and the greedy action with

probability 1−ε. We may also promote exploration using only greedy actions by

modifying the transition function and reward instead. In the model-based rein-

forcement learning method presented in Chapter 11 the transition function and

reward are modeled based on the number of visited state–action pairs N(s, a)

and the number of visited (s, a, s′) tuples N(s, a,′ s). To promote exploration of

unknown parts of state space we may modify the transition function and reward

by preferring states and actions that have not been highly explored (Brafman

and Tennenholtz, 2002). The modified transition function T (s, a, s′) sets the next

state s′ to be the current state s if N(s, a) < k, and N(s,a,s′)+1
N(s,a)+|S| otherwise. Simi-

larly, the modified reward R(s, a) is set to a maximum value Rmax if N(s, a) < k,

and
∑

(s,a) r(s,a)

N(s,a) otherwise.

12.8.1 Sparse Rewards

Environments with sparse rewards, such as the video games Montezuma’s Re-

venge and Pitfall, posed a challenge to reinforcement learning. Early deep re-

inforcement learning methods such as DQN perform no better than random

on these games. Go-Explore (Ecoffet et al., 2019) and First Return, then Ex-

plore (Ecoffet et al., 2021) are reinforcement learning algorithms that perform

at super-human level on these sparse reward game environments as well as real-

world pick-and-place tasks. Rather than adding randomness to a fraction of the

actions using ε-greedy or by sampling from a stochastic policy, Go-Explore (1)

stores promising states in a buffer, (2) first returns to these states and then (3)

explores the environment.

12.9 Summary

This chapter covers deep reinforcement learning starting from function approxi-

mation. Deep model-free and policy-based methods are described in detail, fol-

lowed by their combination resulting in actor–critic methods. Deep model-based

methods that are given the model, including MCTS and AlphaZero, as well as

world models that learn the model, are presented. Imitation learning learns a

policy from expert demonstrations rather than from an explicit reward. Finally,

we discuss methods that promote exploration and recent methods that work well

in environments with sparse rewards.
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13 Applications

13.1 Introduction

This chapter covers a dozen state-of-the-art applications of deep learning in a

broad range of domains: autonomous vehicles, climate change and climate moni-

toring, computer vision, audio processing, voice swapping, music synthesis, natu-

ral language processing, automated machine learning, learning-to-learn courses,

protein structure prediction and docking, combinatorial optimization, compu-

tational fluid dynamics, and plasma physics. Each deep learning application is

briefly described, along with a visualization or system architecture.

13.2 Autonomous Vehicles

With the rise in self-driving cars, building systems that translate to high on-road

performance is key to achieving deployable systems. End-to-end models have

been used to predict steering commands using raw pixels from a front camera

alone (Bojarski et al., 2016). The authors argue that such a system optimizes

overall performance instead of optimizing human-selected intermediate criteria

like lane detection, which does not necessarily guarantee overall performance.

Other systems try to use a 360-degree view and a route planner as part of the

inputs. These incorporate more information than simply a front camera view.

This is closely related to the broader field of perception and the mental mapping

of a route that a human inherently perceives. These are especially useful in

complex driving scenarios like intersections and city environments (Hecker et al.,

2018). Map information along with passenger comfort measures have also been

shown to improve accuracy (Hecker et al., 2020). Related works have shown the

power of neural memory networks to capture temporal information (Fernando

et al., 2017), moving away from the paradigm of mapping a single frame to

action and instead incorporating long-term dependencies, which are crucial in

self-driving.

Rather than predicting a vehicle’s trajectory directly, many systems first con-

struct mid-level representations of the environment. These systems may rely on

LiDAR (light detection and ranging) and ultrasonic sensors in addition to im-

age data. Typical tasks include object detection for objects relevant to driving,
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such as pedestrians, traffic lights, and other vehicles, semantic segmentation to

delineate the boundaries of the road as opposed to the sidewalk and other areas,

and scene reconstruction, to generate 3D scenes given the input data (Shafiee

et al., 2020). These representations are then used as input for predicting driving

actions.

A multi-modal multi-task approach (Yang et al., 2018) was introduced to

address the inherent relationship between a speed and steering angle prediction.

They note that a human driver does not independently make decisions for each

of these tasks. For example, to navigate an imminent obstacle, a human driver

would choose a different steering angle depending on their current speed. A multi-

task system addresses the inherent interconnectedness of predicting both of these

actions. Another approach (Luo et al., 2018), tried to jointly reason about 3D

detection, tracking, and forecasting, given data captured by a 3D sensor from a

bird’s eye view representation of the 3D world. Using this joint representation

makes the model more robust to problems such as occlusion and sparse data.

ChauffeurNet (Bansal et al., 2018) uses imitation learning to learn driving

patterns from 30 million examples. To augment the dataset, they introduce per-

turbations that may result in undesirable events like collisions, and they incorpo-

rate additional losses into their training loss to penalize these undesirable events.

This leads to a more robust model. Rather than predicting speed and steering

wheel angle directly, ChauffeurNet predicts trajectories, then uses a mid-level

controller to translate the trajectories to vehicle-specific actions. This provides a

system that can be used more generally in autonomous vehicles of various makes.

Several works study the trajectory prediction of all agents within an envir-

onment. Multiple futures prediction (Tang and Salakhutdinov, 2019) performs

planning via computing a conditional probability density over the trajectories

of other agents. Multiple future predictions for the agent under consideration

and other agents are essential in considering the various possibilities at a given

instant in time. Multi-head attention-based probabilistic vehicle trajectory pre-

diction (Kim et al., 2020) also goes about multiple future predictions, using

multi-head attention to attend to particular futures of specific agents more than

the rest.

Predicting the trajectory of a vehicle in a multi-agent environment is a chal-

lenging and critical task for developing safe autonomous vehicles. State-of-the-art

models rely on a representation of the environment from direct, low-level input

from sensors on the vehicle or a mid-level representation of the scene, which is

commonly a map annotated with agent positions. These approaches rely on a

model to encode either camera data in the low-level case or annotated maps

in the mid-level case. We show an example of both types of representations in

Figure 13.1. As depicted in the top-left, mid-level representations are used to

predict candidate trajectories, as shown in the top-right. Low-level representa-

tions such as camera data shown in the bottom-left can be used end-to-end to

predict steering angles, as illustrated in the bottom right. To encode these in-

put representations, rather than training a model from scratch, state-of-the-art
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Figure 13.1 An example of input and output representations for mid-level (top) and
low-level (bottom) representations. The mid-level input representation is an
annotated map of the scene (top-left) in the top row, with boxes representing agent
positions and colors representing semantic categories. The output (top-right) is a
probability distribution over candidate trajectories. In the bottom row, a low-level
representation uses the vehicle’s front-facing camera image as input (bottom-left). It
predicts the future steering wheel angle (bottom-right) and vehicle speed.

models rely on transfer learning with a model pre-trained on a supervised task

(Messaoud et al., 2021; Phan-Minh et al., 2020), such as ImageNet classification.

We perform an ablation study comparing transfer learning of supervised and

semi-supervised models while keeping all other factors equal and showing that

semi-supervised models perform better than supervised models for low-level and

mid-level representations.

13.3 Climate Change and Climate Monitoring

13.3.1 Predicting Ocean Biogeochemistry

Ship-based ocean measurements, like those collected by the Global Ocean Ship-

Based Hydrographic Investigations Program (GO-SHIP), as shown in Figure

13.2, provide valuable insight into ocean carbon uptake, biological processes, cir-

culation, and climate variability. However, research cruises are expensive, sparse,

and often seasonally biased due to weather conditions. The Biogeochemical-Argo

(BGC-Argo) program aims to become the first globally comprehensive sensing

array for ocean ecosystems and biogeochemistry. However, profiling floats are

limited in the number of sensors they can support (Chai et al., 2020). Develop-

ing models that accurately predict additional features, such as nutrient ratios,
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Figure 13.2 Transect locations of GO-SHIP oceanographic cruises in the Southern
Ocean, between 03/08/2001-05/02/2019. Latitude 45− 90◦ S, Longitude: −180− 180◦

E, with surface (P < 10 dbar) values of phosphate (left) and silicate (right) in μmol
kg−1.

from limited sensor data will broaden the applicability of BGC-Argo floats and

allow us to better monitor and understand changes to the Earth’s climate.

Previous work demonstrates the utility of applying machine learning to cruise

and float data to estimate values of global N2 fixation (Tang, Li and Cassar,

2019), particulate organic carbon (Sauzède et al., 2020), alkalinity, pH, and ni-

trate (Carter et al., 2018). Using Bayesian neural networks (Bittig et al., 2018)

allows accounting for uncertainties around predicted values to estimate nutri-

ent concentrations. Regression methods have also been applied for examining

interannual variability in primary productivity (D’Alelio et al., 2020).

We draw on these methods to develop neural networks trained on cruise data

to predict phosphate and silicate, essential nutrients controlling ocean produc-

tivity and biodiversity (Weber and Deutsch, 2010). This is important because

these nutrients regulate biological processes that remove carbon from the surface

ocean at an annual rate roughly equivalent to anthropogenic carbon emissions.

The Southern Ocean is selected for developing and testing these models as it

is an important global carbon sink and has the most extensive BGC-Argo float

coverage at this time (Gruber et al., 2019).

We use GO-SHIP data (Carbon Hydrographic Data Office, 2021) in our train-

ing set to train our models. The dataset includes 42, 412 data points from South-

ern Ocean cruises for 2001–2019. We use GO-SHIP data for latitude, longitude,

pressure, temperature, salinity, oxygen, and nitrate to predict phosphate and

silicate. We restrict our data to latitudes below 45◦ S, remove rows with missing

data and follow the World Ocean Circulation Experiment Hydrographic Program

standards, and use quality control flags to down-select our data. We standard-

ize the pressure, temperature, salinity, oxygen, and nitrate features. The posi-
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tion latitude and longitude data are projected to the WGS 84/Antarctic Polar

Stereographic coordinate reference system. We do not include time dependency

(month) because the initial evaluation of our linear regression indicates the low

importance of seasonal variability in predicting silicate and phosphate variation.

We randomly shuffle the feature-encoded data into a 9:1 ratio of training to test

size and train our model using 10-fold cross-validation with mean squared er-

ror (MSE) loss. We select the model with the lowest validation loss to evaluate

the testing error for both phosphate and silicate. To evaluate uncertainty when

predicting silicate and phosphate from our data, we train (1) a one-layer feed-

forward, fully connected neural network with linear activation (equivalent com-

putation to linear regression); and (2) a two-layer feed-forward, fully connected

neural network with 64 hidden units, ReLU activation, and p = 0.2 dropout

probability. We estimate uncertainty by sampling using dropout (Kendall and

Gal, 2017), training the network using dropout, and then testing each example

by running multiple forward passes with dropout weights.

We evaluate our network’s performance by comparing our model’s results of

phosphate and silicate to the values predicted from an Earth system model

(ESM). We use the Institut Pierre Simon Laplace Climate Model 5 (IPSL-CM5)

(Climate Modeling Center, 2021) model results from a 10-year historical model

run initialized in 2000 and a 30-year projection initialized in 2005. We take the

monthly averaged surface values (59,088) of temperature, salinity, oxygen, ni-

trate, phosphate, and silicate at each location over the historical and predicted

span of 35 years (2000–2035), apply our network model to these surface values

(assuming surface pressure = 5 dbar), and compare our model results to the

IPSL-CM5 values of phosphate and silicate. Next, we apply our network to test

data from BGC-Argo float profiles in the Southern Ocean equipped with dis-

solved oxygen and nitrate sensors. There are 175 floats in the period 2000–2020,

measuring 16,710 profiles that meet these criteria, and we only use data points

where all input features are measured. We apply our network to 181,329 data

points and run 100 dropout iterations to generate standard deviations for our

estimates.

The results from our linear regression analysis revealed a more significant un-

certainty in our estimated phosphate values than our silicate values. Additionally,

the uncertainty of our silicate results is more uniform over our test data range. In

contrast, the phosphate results have more significant uncertainty at lower values

and lower uncertainty at higher ones. The uncertainties in our phosphate and

silicate estimates are reduced with our two-layer neural network. The MSE also

decreases substantially for phosphate (MSE linear: 0.019, MSE NN: 0.0031) and

silicate (MSE linear: 240, MSE NN: 50). The most significant uncertainties for

phosphate are at lower values, and for silicate, the most significant uncertain-

ties are at higher silicate values. This could result from the differences in the

distribution of these compounds in the water column. Phosphate has a more sig-

nificant variance in the upper water column (where phosphate values are lowest)



258 13 Applications

and lower variance at depth. In contrast, the variance of silicate is more uniform

throughout the water column.

Neural networks for ESM data: We compared the ESM output values of phos-

phate and silicate to our neural network predicted values of phosphate and sili-

cate from the ESM features. Our neural network under-predicts phosphate val-

ues across the Southern Ocean and under-predicts silicate values away from the

Antarctic continent compared to the ESM values. However, our neural network

is able to capture the spatial variations for both surface phosphate and silicate.

These results suggest that our neural network model is able to capture processes

modeled by the ESM. However, there are still discrepancies between these two

model types. Based on these results, we believe our neural network has a high

enough performance to apply to BGC-Argo data to estimate phosphate and

silicate values from actual observations.

Neural networks for BGC-Argo data: Our neural network applied to BGC-Argo

data predicts similar spatial patterns of phosphate and silicate to those measured

by GO-SHIP and modeled by the ESM. However, a few float trajectories have

noticeably different values from other floats in the region. While this could be due

to local biogeochemical processes, it is likely due to sensor noise or drifts missed

during quality control. The uncertainties estimated for phosphate are generally

low and uniform throughout the region. In contrast, the uncertainty estimates for

silicate present similar spatial patterns as the mean value estimates, with high

uncertainties near the continent. This suggests a systematic error close to the

continent, which could be attributed to ice dynamics causing higher variability

in our features. These results suggest a relationship between latitude and silicate

distributions.

Our neural network models are generally successful, demonstrating high po-

tential for progress in this application. However, our proof-of-concept implemen-

tation leaves areas for improvement. We plan to improve our models by: (1)

including a temporal component and using a spatial-temporal graph neural net-

work (GNN) representation; (2) preserving the spatial relationships within the

training data using a GNN; and (3) training the models on a subset of shallower

GO-SHIP data to better compare our model output to the surface model results

from the ESM.

13.3.2 Predicting Atlantic Multidecadal Variability

The Atlantic Multidecadal Variability (AMV, also known as the Atlantic Multi-

decadal Oscillation) is a basin-wide fluctuation of sea-surface temperatures (SST)

in the North Atlantic with a periodicity of approximately 60–70 years. The AMV

has broad societal impacts. The positive phase of AMV, for example, is associated

with anomalously warm summers in northern Europe and hot, dry summers in

southern Europe (Gao et al., 2019), and increased hurricane activity (Zhang and

Delworth, 2006). These impacts highlight the importance of predicting extreme

AMV states.
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The AMV Index measures the state of AMV (Figure 13.3, bottom-right panel,

solid black line), calculated by averaging SST anomalies over the entire North

Atlantic basin. The maximum warming characterizes the spatial pattern of SST

associated with a positive AMV phase in the subpolar North Atlantic and a

secondary maximum in the tropical Atlantic with minimum warming (or slightly

cooling) in between.

Notwithstanding the value of reliable prediction of AMV, progress in predict-

ing AMV at decadal and longer timescales has been limited. Previous efforts

have used computationally expensive numerical climate models to perform sea-

sonal to multi-year predictions with lead times of up to 10 years. The subpolar

region in the North Atlantic is one of the most predictable regions globally. It

has been associated with the predictability of weather and climate in Europe

and North America for up to 10 years. An outstanding question is whether such

predictability can be extended to prediction lead times longer than ten years,

particularly in a changing climate.

Our objective is to predict these extreme states of the AMV using various

oceanic and atmospheric fields as predictors. This is formulated as a classification

problem, where years above and below one standard deviation of the AMV index

correspond to extremely warm and cold states. In this work, we use multiple

machine learning models to explore the predictability of AMV up to 25 years in

advance.

Machine learning techniques have been successfully applied to predict climate

variability, especially the El Niño-Southern Oscillation (ENSO), an interannual

mode of variability (each cycle is about 3–7 years) in the tropical Pacific Ocean.

Several studies have used convolutional neural networks (CNNs) to predict ENSO

12–16 months ahead using various features (e.g. SST, ocean heat content, sea

surface height; (Ham et al., 2019; Pal et al., 2020; Yan et al., 2020). This out-

performed the typical 10-month lead time ENSO forecast with state-of-the-art,

fully coupled dynamic models (Ham et al., 2019).

However, little work has been done to predict decadal and longer modes of

variability, such as the AMV using ML. The biggest challenge is the lack of data.

Widespread observational records for many variables are only available after the

1980s, limiting both the temporal extent and pool of predictors that may be used

for training. For interannual modes such as ENSO, current observations can be

easily partitioned into ample training and testing datasets with multiple ENSO

cycles in each subset of data. However, a single AMV cycle requires 60–70 years,

making it nearly impossible to train and test a neural network on observational

data alone.

To remedy the lack of observational data for the AMV, we used the Commu-

nity Earth System Model version 1.1 Large Ensemble Simulations.1 This is a

fully coupled global climate model that includes the best of current knowledge

of physics and has shown good performance in simulating the periodicity and

1 See https://ncar.github.io/cesm-lens-aws

https://ncar.github.io/cesm-lens-aws
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Figure 13.3 Variability of input predictors, which include SST, sea surface salinity,
and sea-level pressure. The prediction objectives (lower right) are strongly positive
(red) and negative (blue) AMV states outside one standard deviation of the AMV
index (dashed black line). The AMV spatial pattern from the CESM simulation
reasonably captures the enhanced warming at subpolar and tropical latitudes.

large-scale patterns of the AMV, comparable with observations (Wang et al.,

2015). There are 40 ensemble runs, each between 1920 and 2005. The individ-

ual runs are slightly perturbed in their initial conditions and thus treated as 40

parallel worlds. The variability of the ocean and atmospheric dynamics in each

run represents intrinsic natural variability in the climate system that we aim to

predict and provides a diverse subsampling of AMV behavior.

Our objective is to train machine learning models to predict the AMV state

(AMV+, AMV−, neutral). Each model is given two-dimensional maps of SST,

sea surface salinity (SSS), and sea-level pressure (SLP) and is trained to predict

the AMV state at a given lead time ahead, from 0-year (AMV at the current

year) to 25-year lead (AMV 25 years into the future). We train models to make

predictions every three years. This results in nine models for each architecture,

each specialized in predicting AMV at a particular lead time. The procedure is

repeated ten times for each lead time to account for sensitivity to the initializa-

tion of model weights and randomness during the training and testing process.

To quantify the success of each model, we define prediction skill as the accu-

racy of correct predictions for each AMV state. We compare the performance

of the models against a persistence forecast, which is a standard baseline in the
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discipline. The persistence forecast is formulated so that the current state is used

to predict the target state. The accuracy of this prediction method is evaluated

for each lead time in the dataset. This study used a CNN residual neural network

(specifically ResNet50), AutoML, and FractalDB.

13.3.3 Predicting Wildfire Growth

According to projections, the warmer, drier conditions caused in part by climate

change will result in longer, more severe fire seasons as time goes on (Halofsky

et al., 2020). When taken together, the direct and indirect costs of wildfires in

the United States account for hundreds of billions of dollars in losses each year,

with the state of California alone suffering some $100 billion in costs after the

2017 fire season (Roman et al., 2020). Since the early 2000s, machine learning has

been applied in a variety of wildfire applications (Jain et al., 2020). Of particular

interest is predicting how quickly and in which direction wildfires grow within

the ignition. With early detection of wildfires pivotal to fire response efforts and

the inherent unpredictability of wildfire movements, predicting the behavior of

a wildfire within the first few hours of ignition provides first responders with

invaluable information (Sahin and Ince, 2009).

To this end, we compare the performance of baseline models in predicting the

growth of wildfire fronts up to 30 hours after ignition using a dataset of simu-

lated wildfires. Leveraging OpenAI’s Codex model, we synthesize model variants

from the baseline models, tune hyperparameters, and ensemble the human ex-

pert model variants and the Codex model variants. Among the human baseline

models, a many-to-many convolutional long short-term memory (LSTM) model

performs best. Our results demonstrate the power of leveraging program synthe-

sis to generate variations of wildfire behavior prediction models automatically.

Within the subfield of fire behavior, researchers have predicted fire growth on

various scales. At a high level, fire behavior has been formulated as a classification

problem (Markuzon and Kolitz, 2009) using Bayesian networks, k -nearest neigh-

bors, and random forests on satellite data to predict the future size of an incipient

fire as a binary value. Several works have attempted to predict fire spread at the

pixel level on a more granular scale. Convolutional LSTMs (ConvLSTMs; (Burge

et al., 2020)) yield more accurate predictions than CNNs (Hodges and Lattimer,

2019). Convolutional LSTMs model the transient dynamics in the wildfire data.

Reinforcement learning has been used for modeling forest wildfire dynamics from

satellite images (Ganapathi Subramanian and Crowley, 2018). The relationships

between forest fires and weather conditions from long-term observations have

also been explored (Koutsias et al., 2013). In this work, we demonstrate a de-

crease in performance due to distribution shift when training on simulated data

and testing on real-world data. Next, we compare a CNN, CNN-LSTM, and a

ConvLSTM on a more complex dataset of simulated fires. Among these baseline

models, ConvLSTM performs best. Finally, we demonstrate that a synthesized

model outperforms these baselines.
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Figure 13.4 Examples of input channels used in the FARSITE wildfire simulator. The
domain in this figure is the Eel River area in California. These environmental features
and FARSITE burn maps are used as input for our models.

The data used in this work is the output of the FARSITE wildfire simulator

(Hodges and Lattimer, 2019), which is a burn map simulation of the fire growth.

The FARSITE simulator uses images of topography, vegetation, precipitation,

and wind as inputs. Sample simulator inputs are shown in Figure 13.4. The sim-

ulator uses Finney’s method (Finney, 1998) of crown fire calculation to simulate

the fire growth. Our training and testing set consists of 2,500 FARSITE simu-

lations of randomly selected 50 × 50 km regions in the state of California with

resolutions of 0.03 km of realistic landscape and vegetation and varying moisture

content and wind. Each fire is simulated up to 48 hours with output burn maps

at 1 km resolution (50× 50 arrays) extracted every 6 hours. In addition to these

burn maps, the input to our models also included 12 relevant down-sampled en-

vironmental variables, also represented by 50× 50 arrays: a fuel model; 1-, 10-,

and 100-hour moistures; live herbaceous and woody moistures; canopy cover,

top height, and base height; east–west and north–south winds; and elevation.

We note that we split the dataset such that we train on 1,804 images and test

on 290 images for all models.

13.4 Computer Vision

13.4.1 Kinship Verification

The ability to recognize kinship between faces based only on images contributes

to applications such as social media, forensics, reuniting families, and geneal-

ogy. However, these fields each possess unique datasets that are highly varied

in terms of image quality, lighting conditions, pose, facial expression, and view-

ing angle, making creating an image-processing algorithm that works in general

quite challenging. To address these issues, an annual automatic kinship recog-

nition challenge Recognizing Families in the Wild (RFIW) releases a sizeable
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Figure 13.5 Kinship verification deep learning architecture: Multiple deep Siamese
networks are used. A pair of images for verification are fed through a pre-trained
convolutional backbone (He et al., 2016a; Hu et al., 2018). The backbones project the
images into a latent feature space which are flattened and then combined by feature
fusion (Yu et al., 2020). The result of the feature fusion is fed through a fully
connected network in which the final layer is a single binary classification predicting
kin or non-kin. Multiple Siamese networks written by both human experts and
OpenAI Codex are ensembled.

multi-task dataset to aid the development of modern data-driven approaches for

solving these critical visual kin-based problems (Robinson et al., 2016, 2021).

Deep learning models have been developed for kinship verification, which en-

tails the binary classification of two pictures’ relationships as kin or non-kin.

The architecture shown in Figure 13.11 uses a variety of models written by both

human experts and automatically by OpenAI Codex (Chen et al., 2021). The

models are then ensembled to predict the confidence that a pair of face images

are kin. Each model utilizes a Siamese convolutional backbone with pre-trained

weights to encode one-dimensional embeddings of each image. Embeddings are

combined by feature fusion (He et al., 2016a; Hu et al., 2018; Yu et al., 2020),

and the fused encoding is fed through a series of fully connected layers in order

to make a prediction. The network predictions of many models are ensembled

before applying a threshold to obtain a binary classification.

13.4.2 Image-to-3D

Three-dimensional model construction from 2D images of objects is an active

research area (Fu et al., 2021; Kniaz et al., 2020; Yu and Oh, 2022). Algorithms

exist (Lim et al., 2013) for modeling the fine-pose of objects within captured 2D

images and matching them to a set of 3D models. Generative adversarial network

(GAN)-based approaches (Pan et al., 2021; Hu et al., 2021) for 3D reconstruc-

tion demonstrate high-quality outputs and have recently been extended to allow

control over the output. Other approaches (Girdhar et al., 2016) develop vector

representations of 3D objects that are predictable from 2D images and methods
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Figure 13.6 Our method takes an image as input and produces a voxelized 3D model,
which is then converted to a LEGO® brick set. From the provided pieces and
instructions, the LEGO®model can then be built in the real world; example shown
at the right.

for automatic generation of 3D models through octree-based pruning (Stigeborn,

2018).

13.4.3 Image2LEGO®

For decades, LEGO® bricks have been a staple of entertainment for children and

adults alike, offering the ability to construct anything one can imagine from sim-

ple building blocks. However, for all but the most exceptional LEGO® engineers,

dreams quickly outgrow skills, and constructing the complex images around them

becomes too great a challenge. LEGO®bricks have been assembled into intri-

cate and fantastical structures in many cases, and simplifying constructing the

more complex designs is essential to maintaining appeal for amateur builders

and attracting a new generation of LEGO® enthusiasts. To make these creative

possibilities accessible to all, we developed an end-to-end approach for producing

LEGO® -type brick 3D models directly from 2D images. Our work has three se-

quential components: it (1) converts a 2D image to a latent representation; (2) de-

codes the latent representation to a 3D voxel model; and (3) applies an algorithm

to transform the voxelized model to 3D LEGO®bricks. Our work represents the

first complete approach that allows users to generate real LEGO® sets from 2D

images in a single pipeline. A basic high-level demonstration of the entire Im-

age2LEGO®pipeline is presented in Figure 13.6. A photograph of an airplane is

converted to a 3D LEGO®model, and the corresponding instructions and brick

parts list are used to construct a physical LEGO® airplane build. We tackle the

issues specific to constructing high-resolution real 3D LEGO®models, such as

color and hollow structures. We present a pipeline that combines creating a 3D

model from a 2D image with an algorithm for mapping this 3D model to a set of

LEGO® -compatible bricks to provide this new Image2LEGO® application and

evaluate by examples and analysis to show how and when this pipeline works.

We focus on our novel approach for multi-class object-image-to-Lego construc-

tion. However, the same approach is extended to other creative applications by
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leveraging previous image-to-model work. For instance, generating LEGO®models

from pictures of one’s face is already an application of interest. However, current

work is limited to the generation of 2D LEGO®mosaics from images, gener-

ated by the commercial product called LEGO®Mosaic Maker (Lego, 2020).

However, we extend the Image2LEGO® pipeline to include the pre-trained Vol-

umetric Regression Network (VRN) for single-image 3D reconstruction of faces

(Jackson et al., 2017). In contrast to the 2D mosaic, our approach generates a

3D LEGO® face from a single 2D image. Moreover, other learned tools may be

appended to the base pipeline to develop more innovative tools. For instance, by

prepending the VRN with a sketch-to-face model (Chen et al., 2020), we develop

a tool that directly converts an imagined drawing into a LEGO®model, of-

fering nearly limitless creative possibilities. We demonstrate another extension,

where we apply the Image2LEGO® pipeline with DALL-E (Ramesh, Pavlov,

Goh, Gray, Voss, Radford, Chen and Sutskever, 2021; Ramesh et al., 2022) out-

puts to create a tool that automatically converts captions to LEGO®models.

The challenge of converting voxelized 3D models into LEGO® designs has

been previously explored. Real-time conversion of surface meshes to voxels to LE-

GOs® (Silva et al., 2009) and methods for high-detail LEGO® representations

of triangle mesh boundaries (Lambrecht, 2006) have been demonstrated. A gap

has remained between 3D model generation from images and LEGO® generation

from 3D models. Our work aims to bridge this gap by developing a complete Im-

age2LEGO® pipeline, allowing anyone to create custom LEGO®models from

2D images.

The problem of LEGO® generation from images adds a goal to 3D model

generation, namely that it is essential to have flexibility in the output reso-

lution. Additionally, the latent space should have some flexibility to generate

unseen structures from new input images. The former helps provide users with

LEGO® designs of different scales and resolutions, to achieve better varying

levels of difficulty, availability of material resources, and cognitive effort. For

instance, small renditions of an object may be helpful as fine elements in a

greater scene, while larger renditions may serve as independent LEGO®models.

The latter feature of a generalizable latent space allows users to generate new

LEGO® sets associated with newly captured images. This work represents the

first effort to combine these approaches, using an octree-structured autoencoder

in the image-to-model pipeline. We evaluate its ability to perform this task on

new images in several examples.

13.4.4 Imaging through Scattering Media

In biological imaging, tissues act as scattering media that induce aberration

and background noise in the captured image, where the true object is faded

out. Retrieving the hidden object from the image thus becomes a challenging

inverse problem in computational optics. Normally, the random scattering me-

dia properties are unknown and are difficult to characterize fully. Traditional
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techniques formulate this problem as an optimization based on a transmission

matrix or forward operator, with a regularization term derived from the object

prior knowledge: x̂ = argmin
x

‖y −Ax‖2 + λΦ(x), where x is the unknown object

with x̂ being its estimation, and y is the observed image, A the forward matrix,

and a regularization function Φ (x) with a weighting parameter λ. However, many

practical imaging instances arise when such formulations and methods fail. The

nonlinearity in the forward imaging process, especially under heavy light scat-

tering conditions, means that learning from examples is an ideal solution due to

the ability to handle nonlinearities.

Real-world applications of imaging through scattering media include (1) imag-

ing through tissue with visible light, which allows for non-invasive sensing inside

the body without exposure to excess radiation while potentially allowing for bet-

ter functional imaging than standards today such as MRI; (2) privacy-preserving

use cases, such as human–computer interaction systems, where the agent must

observe the characteristics of the human, but the image of them is obscured to

preserve their privacy. Thus, the agent is able to capture essential information

without capturing identifying information; (3) sensing through dense fog for au-

tonomous navigation (driving, flight, etc.) allows for safe movement in inclement

weather; and (4) underwater imaging, where turbulence and particulate matter

obscure the line of sight.

Instead of solving for data fidelity and regularizer by optimization, learning-

based methods alternatively model the forward operator and regularizer simulta-

neously through known objects and images through random media. The first im-

plementation of this approach (Horisaki et al., 2016) used support vector regres-

sion learning and successfully learned to reconstruct face objects. However, the

fully connected two-layer architecture fails to effectively generalize from trained

face objects to other non-facial object classes. A better network architecture

is necessary for more generalizable learning and accurate performance. A U-

Net was first proposed for biomedical image segmentation (Ronneberger et al.,

2015). The skip-connection in the U-Net architecture enables its superiority in

extracting image features over other CNN architectures.

Such a U-Net model has been applied to this problem (Li, Deng, Lee, Sinha

and Barbastathis, 2018), taking a speckle pattern as input and using an encoder–

decoder structure to generate high-resolution images. In order to account for

the data sparsity that often accompanies computational imaging, the negative

Pearson correlation coefficient (NPCC) is used (Li, Deng, Lee, Sinha and Bar-

bastathis, 2018) rather than cross entropy as the neural network loss function.

The resulting network, called IDiffNet, adapts to different scattering media for

sparse inputs, with the NPCC used to learn sparsity as a strong prior in the

ground-truth values. While IDifNet works well on training and testing data from

the same database and distribution, it does not generalize well among different

databases and suffers from overfitting (Li, Deng, Lee, Sinha and Barbastathis,

2018).
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Similarly, a U-Net is used (Li, Xue and Tian, 2018) to map speckle patterns to

two output images – the predicted object and background – for a set of different

diffusers. Instead of implementing computational imagining as an inverse prob-

lem, recent work learns the statistical properties of speckle intensity patterns in

a way that generalizes to various scattering media. Data augmentation may be

used to increase the training set size, for example, by simulation (Wang, Wang,

Wang, Li and Situ, 2019). In this work, we use a new experimental setup, using a

digital micromirror device (DMD) instead of a spatial light modulator (SLM) as

the pixelwise intensity object, resulting in speckles of 10 micrometers instead of

16 micrometers, as seen in previous work (Li, Xue and Tian, 2018). When test-

ing on speckles from previously unseen objects through unseen diffusers (types of

scattering media), neural networks trained on image sets with multiple diffusers

perform better than ones trained on a single diffuser (Li, Xue and Tian, 2018).

An experimental setup is illustrated in Figure 13.7. Light from a laser source is

first collimated and then illuminates onto a DMD (DLP LightCrafter 6500, pixel

size 7.6 micrometers). The DMD, placed at a certain angle relative to the illumi-

nation beam, acts as a pixelwise intensity object. After modulation by the DMD,

the beam passes through a thin glass diffuser (Thorlabs, 220 grits, DG10-220)

and is scattered. A two-lens telescope imaging system then relays the resulting

image onto a camera (FLIR, Grasshopper 3, pixel size 3.45 micrometers).

A two-channel network splits each input image into two tensors, one for the

object and another for the background. A U-Net considers a single channel out-

putted through a sigmoid activation layer. This produces a clear reconstruction.

Each convolutional layer is replaced with a dense block. The U-Net model is sep-

arated into an encoder and decoder. The encoder uses five layers, each consisting

of 2D Convolution-ReLU-Dense Blocks followed by max-pooling, to reduce the

lateral size of the image while increasing the number of tensors in the channel

dimension. The convolutional kernel is size 3× 3, and the dense kernel is 5 × 5.

The decoder uses a similar series of operations joined by upsampling and con-

catenation in the channel dimension with the corresponding encoder layer. This

re-expands the lateral image size and results in the number of channel-dimension

tensors being one output image.

Each dense block consists of several subsequent convolutional blocks. This con-

volutional block series is repeated four times during encoding, while decoding

has this series repeated only three times. The basic structure of a convolutional

block consists of batch normalization, ReLU, convolutional layer, and conditional

dropout with a probability of 0.5. The resulting feature maps from these sub-

sequent convolutional blocks are concatenated in the channel dimension. The

upsampling function consists of three layers: nearest-neighbor up-sampling, 2D

convolution, and ReLU. The upsampling is used in the decoding part of the

network, which is iteratively followed by concatenation with the previous dense

block outputs in the channel dimension.

The network is trained using stochastic gradient descent (SGD) with momen-

tum. During training, the batch is forward-propagated through the model, the
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Figure 13.7 Experimental setup of the scattering media imaging system. Top:
schematic of the optical configuration, with an example of a speckle pattern (right)
that is mapped to the corresponding ground truth object (left). Bottom: the physical
configuration corresponding to the schematic diagram.

loss is computed and backpropagated, the tracked gradients for the modules are

zeroed, and the step function is applied to the optimizer. During evaluation, the

model is validated using previously unseen validation data. The training loss

and validation loss are computed for each epoch. Commonly used loss functions

including MSE and mean absolute error (MAE) do not promote sparsity since

they assume the underlying signals follow Gaussian and Laplace statistics, re-

spectively. Considering the high sparsity in the MNIST database, we consider

two more appropriate candidates for the loss function: the negative Pearson cor-

relation coefficient (NPCC) and average binary cross entropy (BCE):

LNPCC = −
∑

i (x− x̃) (p− p̃)
√

∑

i (x− x̃)
2
√

∑

i (p− p̃)
2

(13.1)

LBCE = − 1

2N

∑

i

(x log (p) + (1− x) log (1− p)) (13.2)

where x̃ and p̃ are the average ground truth x and network output p, and i

indexes each of the N pixels of the image.
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13.4.5 Contrastive Language-Image Pre-training

Contrastive language-image pre-training (CLIP) (Radford et al., 2021) uses 400

million text–image pairs collected from the web to train a pair of encoders: one for

text and another for images. CLIP is trained using a contrastive loss, encouraging

the model to map similar images to similar text and different images to different

text. A new image is first embedded, and then the model is used to find the most

similar embedded text, performing zero-shot classification. The CLIP model is

used in downstream tasks such as image captioning, image retrieval, and zero-

shot classification.

13.5 Speech and Audio Processing

13.5.1 Audio Reverb Impulse Response Synthesis

Artificial Reverberation
Historically, recording studios built reverberant chambers with speakers and mi-

crophones to apply reverb to prerecorded audio directly within a physical space

(Rettinger, 1957). Reverberation circuits, first proposed in the 1960s, use a net-

work of filters and delay lines to mimic a reverberant space (Schroeder and

Logan, 1961). Later, digital algorithmic approaches applied numerical methods

to simulate similar effects. Conversely, convolution reverb relies on audio record-

ings of a space’s response to a broadband stimulus, typically a noise burst or sine

sweep. This results in a digital replica of a space’s reverberant characteristics,

which can then be applied to any audio signal (Anderegg et al., 2004).

Convolutional neural networks have been used for estimating late-reverberation

statistics from images (Kon and Koike, 2019, 2020), though not to model the

complete audio impulse response (IR) from an image. This work is based on the

finding that experienced acoustic engineers readily estimate a space’s IR or re-

verberant characteristics from an image (Kon and Koike, 2018). Room geometry

has also been estimated from 360-degree images of four specific rooms (Remaggi

et al., 2019) and used to create virtual acoustic environments that are compared

with ground-truth recordings, though again, IRs are not directly synthesized

from the images. A related line of work synthesizes spatial audio based on vi-

sual information (Li, Langlois and Zheng, 2018; Gao and Grauman, 2019; Kim

et al., 2019). Prior work exists on the synthesis of IRs using RNNs (Sali and

Lerch, 2020), autoencoders (Steinmetz, 2018), and GANs: IR-GAN (Ratnarajah

et al., 2021) uses parameters from real-world IRs to generate new synthetic IRs,

whereas our work synthesizes an audio IR directly from an image.

Recent work has shown that GANs are amenable to audio generation and

can result in more globally coherent outputs (Donahue et al., 2018). GANSynth

(Engel et al., 2019) generates an audio sequence in parallel via a progressive GAN

architecture, allowing faster than real-time synthesis and higher efficiency than

the autoregressive WaveNet (Oord et al., 2016) architecture. Unlike WaveNet,
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which uses time-distributed latent coding, GANSynth synthesizes an entire audio

segment from a single latent vector. Given our need for a global structure, we

create a fixed-length representation of our input and adapt our generator model

from this approach.

Measured IRs have been approximated with shaped noise (Lee et al., 2010;

Bryan, 2020). While room IRs exhibit statistical regularities (Traer and McDer-

mott, 2016) that can be modeled stochastically, the domain of this modeling is

time and frequency limited (Badeau, 2019) and may not reflect all characteris-

tics of real-world recorded IRs. Simulating reverb with ray tracing is possible but

prohibitively expensive for typical applications (Schissler and Manocha, 2016).

By directly approximating measured audio IRs at the spectrogram level, our

outputs are immediately applicable to tasks such as convolution reverb, which

applies the reverberant characteristics of the IR to another audio signal.

Between visual and auditory domains, conditional GANs have been used for

translating between images and audio samples of people playing instruments

(Chen et al., 2017). The model employs a conditional GAN with an image en-

coder that takes images as input and produces spectrograms. A similar over-

all design, with an encoder, generator, and conditional discriminator (Mentzer

et al., n.d.) has been applied to obtain state-of-the-art results on image com-

pression, among many other applications. The generator and discriminator are

deep convolutional networks based on the GANSynth (Engel et al., 2019) model

(non-progressive variant), with modifications to suit our dataset, dimensions,

and training procedure.

The encoder module combines image feature extraction with depth estima-

tion to produce latent vectors from two-dimensional images of scenes. For depth

estimation, we use the pre-trained Monodepth2 network (Godard et al., 2019),

a monocular depth-estimation encoder–decoder network that produces a one-

channel depth map corresponding to our input image. The main feature extrac-

tor is a ResNet50 (He et al., 2016a) pre-trained on Places365 (Zhou et al., n.d.),

which takes a four-channel representation of our scene including the depth chan-

nel (4 × 224 × 224). We add randomly initialized weights to accommodate the

additional input channel for the depth map. Since we are fine-tuning the entire

network, albeit, at a low learning rate, we expect it will learn the relevant fea-

tures during optimization. The architecture’s components are shown in Figure

13.8.

13.5.2 Voice Swapping

Deep learning systems allow two speakers to swap their voices from any two

unpaired sentences such that the result is indistinguishable from authentic voices

and is performed in real-time on a laptop. Each of the two speakers pronounces

any unpaired single short sentences into a microphone. The system plays the

original voice recordings, then swaps the speakers’ voices, playing the words

pronounced by the first speaker with the second speaker’s voice and vice-versa.
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Figure 13.8 Image2Reverb deep learning system architecture. The system consists of
an autoencoder and GAN networks. Left: An input image is converted into four
channels: red, green, blue, and depth. The depth map is estimated by Monodepth2, a
pre-trained encoder–decoder network. Right: The model employs a conditional GAN.
An image feature encoder is given the RGB and depth images and produces part of
the generator’s latent vector, which is then concatenated with noise. The
discriminator applies the image latent vector label at an intermediate stage via
concatenation to make a conditional real/fake prediction, calculating loss and
optimizing the encoder, generator, and discriminator.

The two input voices are processed in two distinct ways; one to extract the text

of each speech and one to learn each speaker’s unique voice profile. The text

from speaker A’s speech is extracted using state-of-the-art pre-trained voice-

to-text models. Next, the audio from speaker B is passed through an encoder,

which derives an embedding that describes speaker B’s distinctive features. Next,

we use the text extracted from speaker A and the embeddings of speaker B to

synthesize the Mel spectrogram, which is fed into a vocoder to generate the

final audio of speaker A’s sentence with speaker B’s voice. The exact process is

mirrored with speakers’ roles swapped. Our implementation leverages pre-trained

neural networks – an encoder, synthesizer, and vocoder models – for a realistic

real-time performance.

13.5.3 Explainable Musical Phrase Completion

Music is a multi-modal medium, having both rich spectro-temporal and sym-

bolic representations and tactile and motor experiences. Thanks to this multi-

modality, neuroscientists have observed that learning a new musical instrument

has a profound impact on our cognitive ability (Zatorre et al., 2007). Music can

be synthesized and completed using multiple modalities, most naturally using

the audio spectrogram (Drori et al., 2004). While music consists of multiple note

streams (Huang, Cooijmans, Roberts, Courville and Eck, 2017), this work uses a

language model. We demonstrate the completion of partial musical sequences by

deep neural networks, conditioned on the surrounding context, using explainable

edit operations of insertion, deletion, and replacement of musical notes and shift-

ing attention between notes. Related work, such as MidiNet (Yang, Chou and
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Figure 13.9 Sample of musical phrases: (a) Spectrogram of original musical phrase
with corresponding notes below; (b) musical phrase with missing time segment; (c)
result of MaskGAN completion; and, (d) result of Neural Editor completion.

Yang, 2017), demonstrates a compelling ability to generate music using a condi-

tional GAN. DeepBach uses a graphical model which successfully produces poly-

phonic rhythmic outputs using pseudo-Gibbs sampling (Hadjeres et al., 2017).

Our approach of using Neural Editor (Guu et al., 2018) for music is unique in

that it is explainable by design.

We collected 3,428 classical music compositions by eight of the top classical

composers from a large digital music repository (Smythe, 2018). We tokenized the

main instrument of each song to generate simple monophonic musical phrases.

We split the dataset into 95% training and 5% test sets, using the same sets for

the Neural Editor and MaskGAN models. We masked out the middle notes of

equal length from the held-out test data, which we completed and synthesized

by our models.

Figure 13.9 shows a sample of results of musical phrase completion using the

MaskGAN and Neural Editor. The odd rows show spectrograms, and the even

rows show their corresponding notes. Column (a) shows the input spectrogram,

(b) shows the spectrogram of the music with missing notes, (c) shows the spec-

trogram completed by MaskGAN, and (d) shows the spectrogram completed by

Neural Editor.

The Neural Editor model generates vector representations for discrete musical

note tokens. The middle phrase of the note sequence is masked and is com-

pleted by our model. These masked vectors serve as inputs to a bi-directional

LSTM model, where edit vectors apply various operations to musical notes: in-

sert, delete, replace, move left, move right. The output is a novel synthesized

musical sequence, and we train the model by maximizing the marginal likeli-

hood. MaskGAN (Fedus et al., 2018) takes a unique approach to conditional

sequence generation. When using MaskGAN to generate new notes to complete

the masked out portion of a musical sequence, rather than being only autore-

gressive, MaskGAN conditions its output on the entire context.
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Figure 13.10 Our experimental setup. For a given pair of datasets (A and B), we
perform three sets of train/test combinations. We train and test within the same
distribution (A/A and B/B), between distributions (A/B and B/A), and between
distributions with target fine-tuning (AftB/B and BftA/A).

13.6 Natural Language Processing

13.6.1 Quantifying and Alleviating Distribution Shifts in Foundation Models on
Review Classification

The impact of distribution shifts on the accuracy of review classification when

using Transformer models is significant. Consider the task of classifying cus-

tomer reviews as fake or real based only on the review text. The extent of the

drop in accuracy when the model tries to predict labels for distributions other

than the one it was trained on is significant, not only because of the dearth of

labeled datasets but also to gain insight into the information encoded by the

Transformer embeddings and what steps may be taken to make their decisions

more robust to possible shifts. The extent of the degradation in accuracy de-

pends primarily on the independent variable across which the shift is created.

We use the available metadata to narrow down four independent variables that

give us balanced training and testing dataset splits while differing with the cho-

sen variable. We train and test across all four permutations of splits for each

of these. The distribution shifts investigated are: (1) Industry Type – hotel and

restaurant reviews; (2) Time – old (pre-2014) and new (post-2014) reviews; (3)

Product Type – Japanese and Italian restaurant reviews; and (4) Sentiment –

positive and negative reviews.

Since one of our goals is to gain insights into Transformer model selection

for tasks that require robustness across distribution shifts, we use three popular

constructs for Transformers: encoder-only BERT (bidirectional encoder repre-

sentations from Transformers) models, an encoder and decoder T5 model, and

the Jurassic-I model with few-shot training. Subsequently, to address the prob-

lem of accuracy degradation due to distribution shifts, we suggest and report

results from our solution of first training on the known distribution, then freez-

ing weights for all but the final layer in the model, and fine-tuning weights for

this final layer with a much smaller subset of the new distribution (100–300 re-

view text samples compared to the previous 10,000 samples) to allow the model

a chance at using the generalizable patterns it saw in the first distribution, while

also enabling it to create distribution-specific insights for the new distribution.
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Detecting fake reviews is a well-known task, the economic implications of which

have been analyzed thoroughly in previous work (He et al., 2020), but with

the growth of the industry for hiring and selling fake reviews, detecting fake

reviews at scale has become a trade of its own and one particularly suited for

the use of natural language processing (Ren and Ji, 2017). We build on the

same motivation by combining this natural language processing task of review

classification with methodology partly based on existing work outside of natural

language processing (Koh et al., 2021) that sets up structures for analyzing

implications of distribution shifts and creating insights for model selection and

red flags in model training. Moreover, the architecture for our BERT instances

is inspired by previous work (Kennedy et al., 2019) that created BERT models

for review datasets. We build on previous work by using a richer dataset, testing

three sizes of BERT, a T5 model, and then, most importantly, investigating and

interpreting the performance of these models on distribution shifts. We also take

inspiration from two notable works (Sun et al., 2017; Arjovsky et al., 2019) to

suggest and report results from a solution of fine-tuning the model based on a

small subset of the distribution-shifted data.

We use the methodology shown in Figure 13.10, which is partly based on previ-

ous work (Koh et al., 2021) on distribution shifts. (1) We begin by standardizing

the review texts to make them compliant with the pre-trained Transformer mod-

els’ expected input, ensuring all steps are applied to any other source’s review

texts. (2) We fine-tune our pre-trained Transformer models, evaluating the per-

formance of the models on an out-of-sample test set in the same distribution to

ascertain how well the model does when it sees reviews similar to the ones it

was trained on. This gives us baseline benchmarks (upper bounds) to assess our

distribution shift metrics. We make sure to achieve state-of-the-art performance

in this problem space by employing Transformer models that were previously

shown to be most successful with the task. (3) For each of the distribution shifts

above, we train and test within the same distribution (e.g., train and test both

on pre-2014 reviews), as well as train and test across the distribution shifts (e.g.,

train on pre-2014 reviews and test on post-2014 reviews). We do so for all the

different permutations for these shifts – employing BERT (three size instances),

T5, and Jurassic-I (with few-shot learning). (4) Lastly, we use the created mod-

els that were trained on one distribution, freeze the weights for all but the last

layer, and fine-tune this layer based on a small subset of 100–300 review text

samples from the new distribution. We do this for each split that was explored

in the previous step, employing only the BERT and T5 instances to report this

method as a solution to the degradation.

We use two labeled datasets: the first is for restaurant reviews from Yelp (Rayana

and Akoglu, 2015) and the second is for hotel reviews (Ott et al., 2013), which

combines internet sources like Expedia, Hotels.com, Orbitz, Priceline, and Tri-

pAdvisor. Both datasets have the review text, fake/actual labels, and metadata.

The metadata was used to find the independent variables along which we could

split the data to create distribution shifts. Since our goal is to look at the general-
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Figure 13.11 Overview of our method. We leverage dataset descriptions and other
AutoML methods to provide zero-shot ML pipeline selection.

izability of the models, we create and their translations to a different distribution

(e.g., from various sources), we decided to limit our input features to standard-

ized review text only. We chose these datasets to work in conjunction because

they are both collections of consumer reviews but are different in that the cus-

tomers are restaurant clients in one and hotel clients in the other. We found

these datasets to be common enough to cross validate transfer learning and, at

the same time, different enough to create an interesting distribution shift.

13.7 Automated Machine Learning

A data scientist facing a challenging new supervised learning task does not gen-

erally invent a new algorithm. Instead, they consider what they know about

the dataset and which algorithms have worked well for similar datasets. Auto-

mated machine learning (AutoML) seeks to automate such tasks, enabling the

widespread and accessible use of machine learning by non-experts. A significant

challenge in the field is to develop fast, efficient algorithms to accelerate machine

learning applications (Kokiopoulou et al., 2019).

This work develops automated solutions that exploit human expertise to learn

which datasets are similar and which algorithms perform best.We use a transformer-

based language model (Vaswani et al., 2017) to process text descriptions of

datasets and algorithms and a feature extractor (BYU-DML, 2019) to represent

the data itself. Our approach fuses each of these representations, representing

each dataset as a node in a graph of datasets. We train our model on other ex-

isting AutoML system solutions, specifically: AutoSklearn (Feurer et al., 2015)

and OBOE (Yang, Akimoto, Kim and Udell, 2019). By leveraging these existing
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systems and openly accessible datasets, we achieve state-of-the-art results using

multiple approaches across various classification problems.

To predict a machine learning pipeline, a simple idea is to use a pipeline that

performed well on the same task and similar datasets; however, what consti-

tutes a similar dataset? The success of an AutoML system often hinges on this

question. Different frameworks have different answers: for example, AutoSklearn

(Feurer et al., 2015) computes a set of meta-features, that is, features describing

the data features, for each dataset, while OBOE (Yang, Akimoto, Kim and Udell,

2019) uses the performance of a few fast, informative models to compute latent

features. More generally, for any supervised learning task, one can view the rec-

ommended algorithms generated by any AutoML system as a vector describing

that task. This work is the first to use the information that a human would check

first: a summary description of the dataset and algorithms, written in free text.

These dataset features induce a metric structure on the space of datasets. Under

an ideal metric, a model that performs well on one dataset would also perform

well on nearby datasets. The methods we develop in this work show how to learn

such a metric using the recommendations of an AutoML framework together

with the dataset description. We provide a new zero-shot AutoML method that

predicts accurate machine learning pipelines for an unseen dataset and classifi-

cation task in real-time.

Bringing techniques from natural language processing to AutoML, we specif-

ically use a large-scale Transformer model to extract information from the de-

scription of both the datasets and algorithms. This allows us to access large

amounts of relevant information that existing AutoML systems are typically not

privy to. These embeddings of dataset and pipeline descriptions are fused with

data meta-features to build a graph where each dataset is a single node. This

graph is then the input to a GNN.

Our real-time AutoML method predicts a pipeline with good performance

within milliseconds given a new dataset. The running time of this predicted

pipeline is typically up to one second, mainly for hyperparameter tuning. The

accuracy of our method is competitive with state-of-the-art AutoML methods

that are given minutes, thus, reducing computation time by orders of magnitude

while improving performance.

Generally, GNNs are used for three main tasks: (1) node prediction, (2) link

prediction, and (3) sub-graph or entire graph property prediction. In this work,

we use a GNN for node prediction, predicting the best machine learning pipeline

for an unseen dataset. Specifically, we use a graph attention network (GAT)

(Veličković et al., 2018) with neighborhood aggregation, in which an attention

function adaptively controls the contribution of neighbors. An advantage of us-

ing a GNN in our use case is that data, metadata, and algorithm information are

shared between datasets (graph nodes) by messages passed between the graph

nodes. In addition, GNNs generalize well to new unknown datasets using their ag-

gregated weights learned during training, which are shared with the test dataset
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during testing. Beyond just a single new dataset, GNNs can generalize further

to an entirely new set of datasets.

Solutions from existing AutoML systems are used to train a new AutoML

model. Our flexible architecture can be extended to use pipeline recommenda-

tions from other AutoML systems to improve performance further. AutoML is an

emerging field of machine learning with the potential to transform the practice of

data science by automatically choosing a model to fit the data best. Several com-

prehensive surveys of the field are available (He et al., 2021; Zöller and Huber,

2021). The most straightforward approach to AutoML considers each dataset in

isolation and asks how to choose the best hyperparameter settings for a given

algorithm. While the most popular method is still grid search, other more effi-

cient approaches include Bayesian optimization (Snoek et al., 2012) and random

search (Solis and Wets, 1981). Recommender systems learn, often exhaustively,

which algorithms and hyperparameter settings perform best for a training set

of datasets and use this information to select better algorithms on a test set

without exhaustive search. This approach reduces the time required to find a

good model. An example is OBOE (Yang, Akimoto, Kim and Udell, 2019) and

TensorOBOE (Yang et al., 2020), which fit a low-rank model to learn the low-

dimensional representations for the models or pipelines and datasets that best

predict the cross-validated errors, among all bilinear models. To find promising

models for a new dataset, OBOE runs a set of fast but informative algorithms on

the new dataset. It uses their cross-validated errors to infer the feature vector for

the new dataset. A related approach (Fusi et al., 2018) using probabilistic ma-

trix factorization powers Microsoft Azure’s AutoML service (Mukunthu, 2019).

Auto-tuned models (Swearingen et al., 2017) represent the search space as a

tree with nodes being algorithms or hyperparameters and searches for the best

branch using a multi-armed bandit. AlphaD3M (Drori, Krishnamurthy, Rampin,

Lourenco, One, Cho, Silva and Freire, 2018; Drori et al., 2019) formulates Au-

toML as a single-player game. The system uses reinforcement learning with self-

play and a pre-trained model, which generalizes from many different datasets

and similar tasks. TPOT (Olson and Moore, 2016) and Autostacker (Chen, Wu,

Mo, Chattopadhyay and Lipson, 2018) use genetic programming to choose both

hyperparameter settings and the topology of a machine learning pipeline. TPOT

represents pipelines as trees, whereas Autostacker represents them as layers.

AutoSklearn (Feurer et al., 2015) chooses a model for a new dataset by first

computing data meta-features to find nearest-neighbor datasets. The best-performing

methods on the neighbors are refined by Bayesian optimization and used to form

an ensemble. End-to-end learning of machine learning pipelines can be performed

using differentiable primitives (Milutinovic et al., 2017) forming a directed acyclic

graph. One major factor in the performance of an AutoML system is the base set

of algorithms it can use to compose more complex pipelines. For a fair compar-

ison, in our numerical experiments, we compare our proposed methods only to

other AutoML systems that use Scikit-learn (Pedregosa et al., 2011) primitives.
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13.8 Education

13.8.1 Learning-to-Learn STEM Courses

Can a machine learn university-level STEM courses? The answer is a resounding

yes (Drori et al., n.d.; Tang et al., 2022). There is a common misconception that

neural networks cannot solve STEM courses at a university level (Choi, 2021).

Recent progress in solving machine learning problems (Tran et al., 2021) uses

Transformers pre-trained on code, and GNNs achieve super-human performance.

However, those systems handle only numeric outputs, take a week of curation

and training for one specific course, overfit the course, and do not scale up to

multiple courses.

We automatically solve, explain, and generate university-level course prob-

lems from multiple STEM courses (at MIT, Harvard, and Columbia) for the first

time. We curate a new dataset of course questions and answers across a dozen

departments: Aeronautics and Astronautics, Chemical Engineering, Chemistry,

Computer Science, Economics, Electrical Engineering, Materials Science, Math-

ematics, Mechanical Engineering, Nuclear Science, Physics, and Statistics. The

courses, their departments, and their universities are shown in Table 13.1.

In order to test the quality of our machine-generated questions, we generate

new questions and use them in a Columbia University course, and perform A/B

tests demonstrating that these machine-generated questions are indistinguishable

from human-written questions and that machine-generated explanations are as

useful as human-written explanations, again for the first time. Our approach

consists of the following steps: (1) given course questions, we automatically gen-

erate programs by program synthesis and few-shot learning using a Transformer

model, OpenAI Codex (Chen et al., 2021), pre-trained on text and fine-tuned on

code; (2) execute the programs to obtain and evaluate the answers; (3) automat-

ically explain the correct solutions using Codex; (4) automatically generate new

questions that are qualitatively indistinguishable from human-written questions.

Our approach handles multiple output modalities, including numbers, text, and

visual outputs. We verify that we do not overfit by solving an entirely new course

not available online. This work is a significant step forward in applying machine

learning to education, automating a considerable part of the work involved in

teaching. Our approach allows the personalization of questions based on diffi-

culty level and student backgrounds. It is the first scalable solution, scaling up

to a broad range of courses across the schools of engineering and science.

The generative aspect of OpenAI’s Codex also gives us the ability to generate

new questions appropriate for developing new course content. We introduce these

newly generated questions into a Columbia University course and demonstrate

by an A/B test that the quality of these questions is on par with human-written

questions, again for the first time.

This work is a significant step forward in applying machine learning to ed-

ucation, automating a considerable part of the work involved in teaching. Our
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Table 13.1 University STEM courses: we curate, solve, explain, and generate new

questions for each course.

ID Uni. Department Course Number

1 MIT Aeronautics and Astronautics Unified Engineering 1-4 16.01-4
2 MIT Aeronautics and Astronautics Estimation & Control of Aerospace Systems 16.30
3 MIT Aeronautics and Astronautics Intro to Propulsion Systems 16.50

4 MIT Materials Science & Eng. Fundamentals of Materials Science 3.012
5 MIT Materials Science & Eng. Math for Materials Scientists & Engineers 3.016
6 MIT Materials Science & Eng. Introduction to Solid-State Chemistry 3.091

7 MIT Chemical Engineering Chemical and Biological Reaction Eng. 10.37

8 MIT Chemistry Principles of Chemical Science 5.111

9 MIT IDSS Statistical Thinking & Data Analysis IDS.013(J)

10 MIT EECS Signal Processing 6.003
11 MIT EECS Introduction to Machine Learning 6.036
12 MIT EECS Mathematics for Computer Science 6.042

13 MIT Physics Introduction to Astronomy 8.282

14 MIT Nuclear Science & Engineering Intro to Nuclear Eng. & Ionizing Radiation 22.01

15 MIT Economics Principles of Microeconomics 14.01

16 MIT Mechanical Engineering Hydrodynamics 2.016
17 MIT Mechanical Engineering Nonlinear Dynamics I: Chaos 2.050J
18 MIT Mechanical Engineering Information & Entropy 2.110J
19 MIT Mechanical Engineering Marine Power and Propulsion 2.611

20 MIT Mathematics Single Variable Calculus 18.01
21 MIT Mathematics Multi-variable Calculus 18.02
22 MIT Mathematics Differential Equations 18.03
23 MIT Mathematics Introduction to Probability and Statistics 18.05
24 MIT Mathematics Linear Algebra 18.06
25 MIT Mathematics Theory of Numbers 18.781

26 Harvard Statistics Probability STATS110

27 Columbia Computer Science Computational Linear Algebra COMS3251

approach allows the personalization of questions based on difficulty level and

student backgrounds and scales up to multiple courses across a broad range of

STEM topics.

As a first example, we solve MIT’s Linear Algebra 18.06 and Columbia Univer-

sity’s Computational Linear Algebra COMS3251 courses with perfect accuracy

by interactive program synthesis. This surprisingly strong result is achieved by

turning the course questions into programming tasks and then running the pro-

grams to produce the correct answers. We use OpenAI Codex with zero-shot

learning to synthesize code from questions without providing any examples in

the prompts. We quantify the difference between the original question text and

the transformed question text that yields a correct answer. Since none of the

COMS3251 questions are available online, the model is not overfitting. We inter-

actively work with Codex to produce both the correct result and visually good

plots, as shown in Figure 13.12. We place the question in context by augmenting

the question with definitions and information required for solving the question,

then rephrase and simplify.

Finally, we automatically generate new questions given a few sample questions

that may be used as new course content.

As a second example, we solve university-level probability and statistics ques-
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Figure 13.12 Interactive workflow: (a) We begin with the original question. Codex
generates a program, which is executed. The result is missing the projection. (b) We
transform the question, and Codex generates a program again to get the correct
answer, though the zero projection vector does not appear on the plot. (c) An
additional task to plot the projection vector with a marker so that it is visible results
in Codex generating modified code which is executed to yield a correct answer and
visually pleasing result.

tions by program synthesis using OpenAI’s Codex. We transform course prob-

lems from MIT’s 18.05 Introduction to Probability and Statistics and Harvard’s

STAT110 Probability into programming tasks. We then execute the generated

code to get a solution. Since these course questions are grounded in probabil-

ity, we often aim to have Codex generate probabilistic programs that simulate

many probabilistic dependencies to compute its solution. Our approach requires

prompt engineering to transform the question from its original form to an ex-

plicit, tractable form that results in a correct program and solution. To estimate

the amount of work needed to translate an original question into its tractable

form, we measure the similarity between original and transformed questions.

Our work is the first to introduce a new dataset of university-level probability

and statistics problems and solve these problems in a scalable fashion using the

program synthesis capabilities of large language models.

This work is a significant step forward in solving quantitative math problems

and opens the door for solving many university-level STEM courses by machine.

13.9 Proteomics

13.9.1 Protein Structure Prediction

Proteins are necessary for various functions within cells, including transport, an-

tibodies, enzymes, and catalysis. They are polymer chains of amino acid residues

whose sequences dictate stable spatial conformations, with particular torsion an-

gles between successive monomers. The amino acid residues must fold into proper
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configurations to perform their functions. The sequence space of proteins is vast,

with 20 possible residues per position, and evolution has been sampling it over

billions of years. Thus, current proteins are highly diverse in sequences, struc-

tures, and functions. The high-throughput acquisition of DNA sequences, and

therefore the ubiquity of known protein sequences, stands in contrast to the lim-

ited availability of 3D structures, which are more functionally relevant. From a

physics standpoint, the process of protein folding is a search for the minimum

energy conformation that happens in nature paradoxically fast (Levinthal, 1969).

Unfortunately, explicitly computing the energy of a protein conformation and its

surrounding water molecules is highly complex.

Inferring local secondary structure (Drori, Dwivedi, Shrestha, Wan, Wang, He,

Mazza, Krogh-Freeman, Leggas, Sandridge et al., 2018) consists of linear anno-

tation of structural elements along the sequence (Kabsch and Sander, 1983).

Inferring tertiary structure consists of resolving the 3D atom coordinates of pro-

teins. When highly similar sequences are available with known structures, this

homology can be used for modeling. PSP was recently tackled by first predict-

ing contact points between amino acids and then leveraging the contact map

to infer structure. A primary contact indicator between a pair of amino acids is

their tendency to have correlated and compensatory mutations during evolution.

The availability of large-scale data on DNA, and therefore protein sequences, al-

lows detection of such co-evolutionary constraints from sets of sequences that

are homologous to a protein of interest. Registering such contacting pairs in a

matrix facilitates a framework for their probabilistic prediction. This contact

map matrix can be generalized to register distances between amino acids (Xu,

2019).

Machine learning approaches garnered recent success in PSP (Anand and

Huang, 2018; AlQuraishi, 2019) and its sub-problems (Wang, Cao, Zhang and

Qi, 2018). These leverage available repositories of tertiary structure (Berman

et al., 2000) and its curated compilations (Orengo et al., 1997) as training data

for models that predict structure from sequence. Specifically, the recent bian-

nual critical assessment of PSP methods (Moult et al., 2018) featured multiple

such methods. Most prominently, a ResNet-based architecture (Jumper et al.,

2021) has achieved impressive results in the CASP evaluation settings, based on

representing protein structures both by their distance matrices as well as their

torsion angles. In this work, we design a novel representation of biologically rel-

evant input data and construct a processing flow for PSP, as shown in Figure

13.13. Our method leverages advances in deep sequence models and proposes a

method to learn transformations of amino acids and their auxiliary information.

The method operates in three stages by (1) predicting backbone atom distance

matrices and torsion angles; (2) recovering backbone atom 3D coordinates; and

(3) reconstructing the full atom protein by optimization.

We demonstrate state-of-art protein structure prediction results using deep

learning models to predict backbone atom distance matrices and torsion angles,

recover backbone atom 3D coordinates and reconstruct the full atom protein
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Figure 13.13 Our method operates by (1) predicting backbone atom distance matrices
and torsion angles; (2) recovering backbone atom 3D coordinates; and (3)
reconstructing the full atom protein by optimization

by optimization. We present a gold standard dataset of around 75,000 proteins,

which we call the CUProtein dataset, which is easy to use in developing deep

learning models for PSP. Next, we demonstrate competitive results with the

winning teams on CASP13 and a comparison with AlphaFold (A7D) (Jumper

et al., 2021) with results mostly superseding the winning teams on CASP12.

This work explores encoded representation for sequences of amino acids alongside

their auxiliary information. We offer full access to data, models, and code, which

removes entry barriers for investigators and makes publicly available the methods

for this critical application domain.

We address two problems: (1) predicting backbone distance matrices and tor-

sion angles of backbone atoms from amino acid sequences, Q8 secondary struc-

ture, PSSMs, and co-evolutionary multiple sequence alignment; and (2) recon-

struction of all-atom coordinates from the predicted distance matrices and tor-

sion angles.

We begin with a one-hot representation of each amino acid and secondary

structure sequence, and real-valued PSSMs and MSA covariance matrices. These

are passed through embedding layers and then onto an encoder–decoder archi-

tecture. To leverage sequence homology, we compute the covariance matrix of

the MSA features by embedding the homology information along a k-dimensional

vector to form a 3-tensor and contract the tensorAijk along with the k-dimensional

embedding, which is then passed as input to the encoder: Σ = Ak
jiAijk.

We use encoder–decoder models with a bottleneck to train prediction models.

The encoder f receives as input the aggregation A (by concatenation) of the em-

beddings ei of each input xi, and two separate decoders g1 and g2 that output

distance matrices and torsion angles for i ∈ {1, . . . , 4}: gj
(

f

(

Agg
xi∈X

(ei(xi))

))

.

In addition, we also use a model that consists of separate encoders fi for each em-

bedded input ei(xi), which are aggregated by concatenation after encoding, and

separate decoders g1 and g2 for torsion angles and backbone distance matrices:

gj

(

Agg
xi∈X

(fi(ei(x1)))

)

. Using a separate encoder model involves a more signifi-
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cant number of trainable parameters. Our models differ in the use of embeddings

for the input, their models, and loss functions.

Building on techniques commonly used in natural language processing, our

models use embeddings and a sequence of bidirectional gated recurrent units

(GRUs) and LSTMs with skip connections. They include batch normalization,

dropout, and dense layers. We experimented with various loss functions, includ-

ing MAE, MSE, Frobenius norm, and distance logarithm, to handle the dynamic

range of distances. We have also implemented distance matrix prediction using

conditional GANs and variational autoencoders (VAEs) for protein subsequences

to learn the loss function.

Once backbone distance matrices and torsion angle are predicted, we address

two reconstruction sub-problems: (1) reconstructing the protein backbone coor-

dinates from their distance matrices, and (2) reconstructing the full atom protein

coordinates from the Cα or Cβ coordinates and torsion angles.

We employ three different techniques for reconstructing the 3D coordinates X

between backbone atoms of a protein from the predicted matrix of their pairwise

distances (Dokmanic et al., 2015). Given a predicted distance matrix D̂, our goal

is to recover 3D coordinates X̂ of n points. We notice that D(X) depends only

on the Gram matrix XTX:

D(X) = 1diag(XTX)T − 2XTX + diag(XTX)1T (13.3)

Multi-dimensional scaling (MDS):

minimize
X̂

D(X̂)− D̂F 2 (13.4)

Semi-definite programming (SDP) and relaxation (SDR):

minimize
G

K(G)− D̂F 2 s.t. G ∈ C (13.5)

where K(G) = 1diag(G)T − 2G+ diag(G)1T operates on the Gram matrix G.

Alternating direction method of multipliers (ADMM) (Anand and Huang, 2018):

minimize
G,Z,η

λη1 +
1

2

⎛

⎝

n
∑

i,j=1

(Gii +Gjj − 2Gij + ηij − D̂2
ij)

⎞

⎠

2

+ 1{Z ∈ Sn
+} s.t. G− Z = 0

We have found multi-dimensional scaling to be the fastest and most robust

method of the three, without depending on algorithm hyperparameters, which

is most suitable for our purposes.

We assign plausible coordinates to the rest of the protein’s atoms given back-

bone coordinates. We begin with an initial guess or prediction for φ and ψ torsion

angles. We maintain a look-up table of mean φ, ψ values for each combination of

two consecutive α torsions and three α-angles (the angles defined by three con-

secutive atoms). Using these values and the Cα positions we generate an initial

model. A series of energy minimization simulations then relax this model under



284 13 Applications

an energy function that includes: standard bonded terms (bond, angle, plane

and out-of-plane), knowledge-based Ramachandran and pairwise terms, torsion

constraints on the φ and ψ angles, and tether constraints on the Cα position.

The latter term reduces the perturbations of the initial high forces. Finally, we

add side-chains using a rotamer library, and remove clashes by a series of energy

minimization simulations. We develop a very similar method for reconstructing

the full-atom protein from Cβ atom distance matrices.

We have compared our predictions on CASP12 and CASP13 (Abriata et al.,

2019) test targets. Deep learning methods were widely used only starting from

CASP13. AlphaFold was introduced starting from CASP13. The use of deep

learning methods in CASP13, due to the availability of DL programming frame-

works, significantly improved performance over CASP12. A representative com-

parison between the winning CASP12 and CASP13 competition models, Al-

phaFold models for CASP13 for which A7D submitted predictions to CASP,

and our models shows results of RMSD around 2 Angstrom on test targets,

which is considered accurate in CASP. Our results supersede the winning teams

of CASP12 compared with each best team for each protein, highlighting the im-

provement using deep learning methods. Our approach is on par with the winning

teams in CASP13, compared with the winning team for each protein, highlight-

ing that our method is state-of-the-art. We measure the sequence-independent

RMSD, consistent with the CASP evaluation reports, and match the deposited

structures and our predictions. CASP competitors such as AlphaFold provide

predictions for selected proteins. Overall, our performance on CASP is highly

competitive. Training our models on a cloud instance takes two days using GPUs.

Prediction of backbone distance matrices and torsion angles takes a few seconds

per protein, and reconstruction of full-atom proteins from distance matrices and

torsion angles takes a few minutes per protein, depending on protein length.

Limitations of this work are: (1) we only handle single-domain proteins and not

complexes with multiple chains; (2) PSSM and MSA data for several of the

CASP targets are limited to a subsequence of the full length protein; and (3) we

do not use available methods for detecting and reconstructing beta-sheets.

13.9.2 Protein Docking

Modeling protein–protein interactions is a primary challenge for elucidating the

mechanisms behind biology’s most fundamental processes. Recent advances in

machine learning for protein folding have established the foundation for pre-

dicting protein–protein interactions through co-folding. A generalized folding

pipeline operates directly on structures for end-to-end protein docking, elimi-

nating the need for costly sequence alignments. Euclidean-equivariant networks

for inferring pairwise three-dimensional matching between pairs of proteins, and

geometric models for iterative construction and refinement of complexes signif-

icantly reduce the computational cost and inference time for protein docking,

reaching metrics on par with state-of-the-art classical methods.
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13.10 Combinatorial Optimization

A core and essential area in computer science and operations research is the

domain of graph algorithms and combinatorial optimization. The literature is

rich in both exact (slow) and heuristic (fast) algorithms (Golden et al., 1980);

however, each algorithm is designed afresh for each new problem with careful

attention by an expert to the problem structure. Approximation algorithms for

NP-hard problems provide only worst-case guarantees (Williamson and Shmoys,

2011), and are not usually linear time, and hence not scalable. Our motivation is

to learn new heuristic algorithms for these problems that require an evaluation

oracle for the problem as input and return a good solution in a pre-specified time

budget. Concretely, we target combinatorial and graph problems in increasing

order of complexity, from polynomial problems such as minimum spanning tree

(MST), and shortest paths (SSP), to NP-hard problems such as the traveling

salesman problem (TSP) and the vehicle routing problem (VRP).

The aptitude of deep learning systems for solving combinatorial optimization

problems has been demonstrated across a wide range of applications in the past

several years (Dai et al., 2017; Bengio et al., 2021). Two recent surveys of re-

inforcement learning methods (Mazyavkina et al., 2021) and machine learning

methods (Vesselinova et al., 2020) for combinatorial optimization over graphs

with applications have become available during the time of this writing. The

power of GNNs (Xu et al., 2019) and the algorithmic alignment between GNNs

and combinatorial algorithms have recently been studied (Xu et al., 2020). Graph

neural networks trained using specific aggregation functions emulate specific al-

gorithms: for example, a GNN aligns well (Xu et al., 2020) with the Bellman–Ford

algorithm for shortest paths.

Our work is motivated by recent theoretical and empirical results in rein-

forcement learning and GNNs. Graph neural network training is equivalent to a

dynamic programming algorithm (Xu et al., 2020), hence GNNs by themselves

can be used to mimic algorithms with polynomial time complexity. Reinforce-

ment learning methods with GNNs can be used to find approximate solutions to

NP-hard combinatorial optimization problems (Dai et al., 2017; Bengio et al.,

2021; Kool et al., 2019).

Combinatorial optimization problems may be solved by exact methods, ap-

proximation algorithms, or heuristics. Machine learning approaches for combi-

natorial optimization have mainly used supervised or reinforcement learning. Our

approach is unsupervised and is based on reinforcement learning. We require nei-

ther output labels nor knowing the optimal solutions, and our method improves

by self-play. Reinforcement learning methods can be divided into model-free

and model-based methods. In turn, model-free methods can be divided into Q-

learning and policy optimization methods (OpenAI, 2020). Model-based meth-

ods have two flavors: methods in which the model is given, such as expert it-

eration (Anthony et al., 2017) or AlphaZero (Silver et al., 2017), and methods

that learn the model, such as World Models (Ha and Schmidhuber, 2018) or
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MuZero (Schrittwieser et al., 2019). AlphaZero has been generalized to many

games (Cazenave et al., 2020), both multiplayer and single-player (Drori, Kr-

ishnamurthy, Rampin, Lourenco, One, Cho, Silva and Freire, 2018). This work

views algorithms on graphs as single-player games and learns graph algorithms.

The supplementary material includes a comprehensive list of supervised and re-

inforcement learning methods used for combinatorial optimization of NP-hard

problems and classification of all previous work by problem, method, and type.

This work provides a general framework for model-free reinforcement learning

using a GNN representation that elegantly adapts to different problem classes

by changing an objective or reward and using the line graph.

Our approach generalizes well from examples on small graphs, where even

exhaustive search is easy, to larger graphs; and the architecture works equally well

when trained on polynomial problems such as MST and on NP-hard problems

such as TSP, though training time is significantly larger for hard problems. We

explore the limits of these algorithms as well: For what kinds of problem classes,

problem instances, and time budgets do they outperform classical approximation

algorithms?

For all graph problems, our approximation running time is linear O(n+m) in

the number of nodes n and edges m, both in theory and in practice. For MST and

SSP our running time is linear O(m) in the number of edges. For TSP and VRP

our running time is linear O(n) in the number of nodes. The TSP approximation

algorithms and heuristics have runtimes that grow at least quadratically in the

graph size.

On random Euclidean graphs with 100 nodes, our method is 1–3 orders of mag-

nitude faster and delivers a comparable optimality gap, Moreover, this speedup

improves as the graph size increases. S2V-DQN (Dai et al., 2017), another re-

inforcement learning method, builds a 10-nearest-neighbor graph, and also has

quadratic runtime complexity; on these graphs, our method runs 52 times faster

and obtains a lower (better) optimality gap, the ratio between a method’s re-

ward and the optimal reward. GPN (Ma et al., 2020) has runtime complexity

O(n log n) with a more significant optimality gap and does not generalize as well

nor easily extend to other problems.

The running time for solving MST using Prim’s algorithm is O(m logm) and

the running time for solving SSP using Dijkstra’s algorithm is O(n log n + m).

For MST, running our method on larger graphs (for longer times) results in

optimality gaps close to 1, converging to an optimal solution.

Generalization on graphs. (1) From small to large random graphs: For MST,

we generalize from small to large graphs accurately. For TSP, we generalize from

small to larger graphs with median tour lengths (and optimality gaps) better

than other methods. (2) Between different types of random graphs: For MST,

we generalize accurately between different types of random graphs. (3) From

random to real-world graphs: For TSP, we generalize from random graphs to

real-world graphs better than other methods.

A unified framework for solving any combinatorial optimization problem over
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Figure 13.14 Our unified framework. (a) The primal graph (white nodes and solid
edges) and its edge-to-vertex line graph (gray nodes and dashed edges). Two nodes in
the line graph are connected if the corresponding edges in the primal graph share a
node. Notice that while the number of primal edges (7) is equal to the number of dual
nodes (7), the number of dual edges (10) is not necessarily equal to the number of
primal nodes (6). (b) Combinatorial optimization as a single-player game defined by
states, actions, and rewards. Traversing a path (green) from the root to a leaf node
(pink square) corresponds to a solution for a problem. White nodes represent states
and black nodes represent actions. From each state, there may be many possible
actions (more than the two illustrated here) representing the possible nodes or edges
in the problem graph. The leaf nodes represent rewards or costs, such as the sum of
weights in MST or length of the tour in TSP. (c) Graph algorithms for polynomial
problems MST and SSP, and NP-hard problems TSP and VRP formulated as
single-player games by reinforcement learning using states, actions, and rewards. For
MST, the state includes the graph, line graph, weights, and selected edges T (red).

graphs: (a) We model problems that involve both actions on nodes and edges by

using the edge-to-vertex line graph. Figure 13.14a shows an example of a primal

graph and its line graph. (b) We model graph algorithms as a single-player game

as shown in Figure 13.14b. (c) We learn different problems by changing the

objective or reward function, as shown in Figure 13.14c.

Given a graph G = (V,E,W ), V = {1, . . . , n} is the set of vertices (nodes), E

is the set of edges and W is the set of edge weights. For edges eij between nodes

i and j in an undirected graph, wij = wji. |V | and |E| represent the number

of vertices and edges in the graph. Given a node i, N (i) denotes the set of its

neighboring nodes. Given a primal graph G = (V,E,W ), the edge-to-vertex dual

or line graph, G∗ = (V ∗, E∗,W ∗), is defined so each edge in the primal graph

corresponds to a node in the line graph: V ∗ = E. Two nodes in the line graph

are connected if the corresponding edges in the primal graph share a node. Edge
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weights in the primal graph become node weights W ∗ in the line graph. Figure

13.14a illustrates the relationship between the primal and line graphs.

We learn MST and SSP by training and running on five different types of ran-

dom graphs: Erdős–Rényi (ER) (Erdös and Rényi, 2011), Barabási–Albert (Al-

bert and Barabási, 2002), stochastic block model (Holland et al., 1983), Watts–

Strogatz (Watts and Strogatz, 1998), and random regular (Steger and Wormald,

1999; Kim and Vu, 2003). We learn TSP and VRP by training and running on

complete graphs with different numbers of random nodes drawn uniformly from

[0, 1]2. For MST and SSP, edge weights are chosen uniformly between 0 and

1 for pairs of nodes that are connected. For TSP and VRP, these weights are

the distances between the nodes. We also test our models on real-world graphs

(Reinelt, 2020).

13.10.1 Problems over Graphs

Given a connected and undirected graph G = (V,E,W ), the MST problem is to

find a tree T = (VT , ET ) with VT = V , ET ⊂ E minimizing the sum of the edge

weights WT ⊂ W . Algorithms for MST problems include Boruvka’s (Nešetřil

et al., 2001), Prim’s (Prim, 1957) and Kruskal’s (Kruskal, 1956) algorithms; all

are greedy algorithms with time complexity O(|E| log |V |).
We consider the SSP problem with non-negative edge weights. Given a con-

nected and directed graph G = (V,E,W ) and a source vertex, the SSP problem

is to find the shortest paths from the source to all other vertices. For the SSP

problem with non-negative weights, Dijkstra’s algorithm (Dijkstra, 1959) com-

plexity is O(|V | log |V |+ |E|) using a heap. For the general single-source shortest

paths problem, Bellman–Ford (Bang-Jensen and Gutin, 2000) runs in O(|V ||E|).
In addition, the Floyd–Warshall algorithm (Cormen et al., 1990) solves the SSP

problem between all pairs of nodes with cubic time complexity O(|V |3).
Given a graph G = (V,E,W ), let V represent a list of cities and W represent

the distances between each pair of cities. The goal of the TSP is to find the

shortest tour that visits each city once and returns to the starting city. The TSP

is an NP-hard problem. Approximation algorithms and heuristics include LKH

(Lin and Kernighan, 1973), Christofides (Christofides, 1976), 2-opt (Lin, 1965;

Aarts and Lenstra, 2003), farthest insertion and nearest neighbor (Rosenkrantz

et al., 1977). Concorde (Applegate et al., 2006) is an exact TSP solver. Gurobi

(Achterberg, 2019) is a general integer programming solver that can also be used

to find an exact TSP solution.

Given M vehicles and a graph G = (V,E) with |V | cities, the goal of the

VRP is to find optimal routes for the vehicles. Each vehicle m ∈ {1, . . . ,M}
starts from the same depot node, visits a subset V (m) of cities and returns to

the depot node. The routes of different vehicles do not intersect except at the

depot; together, the vehicles visit all cities. The optimal routes minimize the

longest tour length of any single route. The TSP is a special case of VRP for one

vehicle.
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13.10.2 Learning Graph Algorithms as Single-Player Games

We represent the problem space as a search tree. The leaves of the search tree

represent all (possibly exponentially many) possible solutions to the problem. A

search traverses this tree, choosing a path guided by a neural network as shown

in Figure 13.14b. The initial state, represented by the root node, may be the

empty set, random, or other initial states. Each path from the root to a leaf

consists of moving between nodes (states) along edges (taking actions), reaching

a leaf node (reward). Actions may include adding or removing a node or edge.

The reward (or cost) may be the solution’s value; for example, a sum of weights

or length of tour. For each problem, Figure 13.14c defines the states, actions,

and rewards within our framework. We show that the single-player formulation

extends our framework to other combinatorial optimization problems on graphs.

When the predictions of our neural network capture the global structure of the

problem, this mechanism is very efficient. On the other hand, even if the network

makes poor predictions for a particular problem, the search will still find the

solution if run for a sufficiently long (possibly exponential) time. The network

is retrained using the results of the evaluation oracle on the leaf nodes reached

by the search to improve its predictions. In the context of perfect information

games, a similar mechanism converges asymptotically to the optimal policy (Sun

et al., 2018).

13.11 Physics

13.11.1 Pedestrian Wind Estimation in Urban Environments

The field of fluid dynamics deals with enormous amounts of data from field mea-

surements and experiments to more extensive full-flow field data generated from

computational fluid dynamics (CFD) simulations (Brunton et al., 2020). This

wealth of data, coupled with advances in computing architectures and progress

in machine learning in the last decade, has led to an interest in applying deep

neural networks for rapidly approximating CFD. Applications of deep neural net-

works to fluid dynamics include physics model augmentation with uncertainty

quantification, accuracy prediction improvements, and surrogate modeling for

enabling design exploration (Nathan Kutz, 2017; Duraisamy et al., 2019). Con-

volutional neural networks have been particularly explored for the latter due to

their capacity to represent non-linear input and output functions while extract-

ing spatial relationships, and GANs as well due to their additional ability to

learn without explicitly defining a loss function. A number of implementations

have been successful at reducing the computational expense of velocity fluid flow

approximations with a minor error compromise (Guo et al., 2016; Farimani et al.,

2017). In contrast to other deep neural network applications such as image and

speech recognition, a major challenge in fluid dynamics is the strict requirement

for fluid flow fields quantification to be precise, generalizable and interpretable
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Figure 13.15 Testing set sample generator predictions, uncertainties, and absolute
errors. A sample of model predictions for select urban patches is shown and their
associated uncertainties and the absolute error. Visual inspection of the results shows
the model’s capacity to identify zones of impact created by wind obstructions in an
urban scene. It also shows its limited capacity to capture the scale of impact for high
wind factor zones. Other artifacts include inconsistent color patches in portions of the
image and grainy noise.

(Brunton et al., 2020). The computational expense of CFD simulations addi-

tionally makes it largely unfeasible to repeat experiments and expand datasets.

Thus, the finite amount of training data, coupled with distinct feature represen-

tation and accuracy requirements across fluid domain disciplines, motivates the

development of application-specific deep learning models. Figure 13.15 shows a

sample of model predictions, uncertainties, and absolute errors.

13.11.2 Fusion Plasma

The analysis of turbulent flows is a significant area in fusion plasma physics. Cur-

rent theoretical models quantify the degree of turbulence based on the evolution

of specific plasma density structures, called blobs. In this work, we track these

blobs’ shape and position in high-frequency video data obtained from gas puff

imaging (GPI) diagnostics. We compare various tracking approaches and find

that an optical flow method is appropriate for these applications. We train on

synthetic data and test on both synthetic and real data. As a result, our model

effectively tracks blob structures on both synthetic and real experimental GPI

data, showing its prospect as a powerful tool to estimate blob statistics linked

with edge turbulence of the tokamak plasma.

In tokamak fusion reactors, plasmas are magnetically confined to produce en-

ergy from nuclear fusion. In order to maximize the rate of fusion, it is vital

to maintain confinement as long as possible. The quality of this confinement is
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Figure 13.16 (left) Cross-section of a plasma in tokamak reactor, TCV, with the
locations GPI views on the last closed flux surface (LCFS). (center) Snapshot of real
GPI data capturing a blob passing by the LCFS. Here, empty spots correspond to
dead GPI views. The brightness level is color-coded, low as blue and high as yellow.
(right) Snapshot of synthetic data capturing a blob passing by the LCFS. The blob is
represented with a Gaussian ellipse with a major and minor axis marked by
perpendicular black lines.

closely related to the turbulence at the edge region of the plasma core (Figure

13.16a). Current theoretical models can quantify the degree of turbulence from

the evolution of specific structures (“blobs”) within the plasma density field. This

is an evolving area of research. Different models require the analysis of different

“blob statistics” that can be derived from image data (e.g. blob velocity, size, and

intermittency). For example, the fluctuations in the plasma can be described by

a stochastic model as a superposition of uncorrelated Lorentzian pulses, which

is parameterized by the intermittency of blobs (Garcia et al., 2016; Garcia and

Theodorsen, 2017). Furthermore, the radial velocity and the size of blobs can

be used to determine the theoretical regime, predicting dependencies for the

radial velocity of blobs on plasma parameters (Myra et al., 2006). Comparing

various approaches for tracking, we find that optical flow based on deep learning

accurately tracks the position of blobs in low-resolution (12 × 10 pixel), high-

frequency (2 MHz) video data obtained from GPI diagnostics (Zweben et al.,

2017). Gass puff imaging is an edge diagnostic tool that measures the spatially

resolved fluctuations of brightness which can be used as a proxy for plasma

density measurements. Figure 13.16b shows a snapshot of the GPI data that

captures a blob passing by the plasma edge (i.e., the last closed flux surface, or

LCFS) and moving radially out.

13.12 Summary

We have covered a dozen novel applications of deep learning, demonstrating

system architectures and representative results. These include breakthrough ap-

plications in deep learning for protein structure prediction, climate science, au-
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tonomous driving, combinatorial optimization, vision, audio and language, and

education. While humans are generalists, many deep learning applications are

specialists. However, deep learning systems are not limited to specialized do-

mains, as demonstrated by the application of learning-to-learn in many STEM

courses using a single foundation model trained on both text and code.



Appendix A: Matrix Calculus

Matrix calculus defines the partial derivatives of a function with respect to vari-

ables and is used in gradient computations for backpropagation and optimiza-

tion. We will write the derivative of a scalar with respect to a column vector as

a column vector, adopting the denominator layout commonly used in machine

learning. In contrast, in numerator layout the dimensions are transposed.

A.1 Gradient Computations for Backpropagation

We define the gradients of a scalar with respect to a vector or a matrix. This is

useful for computing the gradient of a loss function with respect to activations,

pre-activations, or weights. The dimension of the gradient in these cases is the

dimension of the denominator. Next, we define the gradient of a vector with

respect to another vector which results in the Hessian matrix. Finally, we define

the gradient of a matrix with respect to a scalar.

A.1.1 Scalar by Vector

The gradient of a scalar y with respect to an n× 1-dimensional column vector x

is defined by the n× 1-dimensional column vector:

∂y

∂x
=

⎡

⎢

⎣

∂y
∂x1

...
∂y
∂xn

⎤

⎥

⎦
(A.1)

For example, the gradient of the loss L with respect to the n× 1 weight vector

w is the n× 1-dimensional gradient ∂L
∂w

.

A.1.2 Scalar by Matrix

The gradient of a scalar y with respect to the m × n-dimensional matrix X is

defined by the m× n-dimensional matrix:

∂y

∂X
=

⎡

⎢

⎣

∂y
∂x11

. . . ∂y
∂x1n

...
...

∂y
∂xm1

. . . ∂y

⎤

⎥

⎦
(A.2)
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For example, the gradient of the loss function L, which is a scalar, with respect

to an m× n weight matrix W is the m× n-dimensional gradient ∂L
∂W

.

A.1.3 Vector by Vector

The gradient of the m × 1-dimensional vector y with respect to the n × 1-

dimensional vector x is defined by the m× n-dimensional matrix:

∂y

∂x
=

⎡

⎢

⎣

∂y1

∂x1
. . . ∂y1

∂xn

...
...

∂ym

∂x1
. . . ∂ym

∂xn

⎤

⎥

⎦
(A.3)

For example, the gradient of the n × 1 activation vector a with respect to the

n× 1 pre-activation vector z is an n× n-dimensional gradient ∂a
∂z

.

A.1.4 Matrix by Scalar

The derivative of an m × n-dimensional matrix Y with respect to a scalar x is

the m× n-dimensional matrix:

∂Y

∂x
=

⎡

⎢

⎣

∂y11

∂x
. . . ∂y1n

∂x
...

...
∂ym1

∂x
. . . ∂ymn

∂x

⎤

⎥

⎦
(A.4)

A.2 Gradient Computations for Optimization

We define the gradient of a dot product of vectors with respect to a vector used

in optimization and the gradient of a quadratic form with respect to a vector,

which is useful for quasi-Newton method computations.

A.2.1 Dot Product by Vector

The gradient of the dot product aTx of the 1×n vector aT with the n×1 vector

x with respect to the vector x is the n× 1 vector:

∂aTx

∂x
= a (A.5)

since ∂aT x
∂xi

= ai for all i = 1, . . . , n. The gradient of the dot product of vectors

aT b with respect to another vector x is:

∂aT b

∂x
=

∂a

∂x
b+

∂b
a (A.6)
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A.2.2 Quadratic Form by Vector

The gradient of the quadratic form xTAx with respect to an n× 1-dimensional

vector x is the n× 1-dimensional vector:

∂xTAx

∂x
= (A+AT )x (A.7)

since ∂xTAx
∂xi

=
∑n

j=1 xj(aij+aji) for all i = 1, . . . , n. The second-order derivative

with respect to x is therefore A+AT . If A is a symmetric matrix then A+AT =

2A. These equations are used for deriving quasi-Newton optimization methods.



Appendix B: Scientific Writing and
Reviewing Best Practices

Communicating deep learning methods and results is essential for successful re-

search in academia and industry. This Appendix describes writing and reviewing

best practices.

B.1 Writing Best Practices

Good writing requires rewriting, and therefore, it often helps to start writing

early, write a draft, take breaks, and return to the manuscript while iterat-

ing the process. Once we have a draft version of the text, we may improve it

by omitting needless words (Strunk Jr. and White, 2007), specifically: Omit-

ting subjective words that are often unnecessary and may even be misleading,

omitting unnecessary phrases, simplifying the text, using active voice, and using

parallel constructions.

B.1.1 Introduction

A research paper usually begins with an abstract followed by three sections:

introduction, methods, and results, and ends with a discussion or conclusions. An

abstract may consist of the opening sentences from paragraphs of each text part.

It is essential to place the key contributions upfront in an abstract, explaining

them clearly to the reader. Introductory paragraphs may begin with the main

point or an example and then expand. The introduction usually moves from a

general description to specific details, whereas the discussion moves from the

specific to the general big picture. The introduction may describe a research

problem, explaining why it is essential to the reader. A related-work section may

be part of the introduction and describes previous work, other solutions to the

same problem, or similar approaches previously applied to other problems. The

related work may explain the limitations of previous work and then describe the

contribution of the work presented.

B.1.2 Methods

Methods sections describe the proposed solution, the dataset, and the evaluation

metrics. The proposed solution should be described in detail, including the archi-
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tecture, the training process, and the hyperparameters. The dataset should be

described in detail, including the number of samples, the number of classes, the

number of features, and the distribution of the classes. The evaluation metrics

should be described in detail, for example, the number of folds, the number of

repetitions, and the number of samples per fold.

B.1.3 Figures and Tables

Figures should display information, and following a guiding principle of “less is

more” may produce good graphics (Tufte, 1985). Readers first skim the figures

of a manuscript and the first sentence of each paragraph. Therefore, the figures

and their captions should be self-contained. Captions may be lengthy, explaining

what to pay attention to. Tables may compare different approaches and the

present method.

B.1.4 Results

In the results section, it is essential not to over-sell the work and deliver a correct

message regarding the performance of the methods while clearly explaining the

scope and limitations of the work.

B.1.5 Abbreviations and Notation

Writing a book chapter or book requires consistent notation and text style

throughout the manuscript. Once a version of the text is ready, copy editing and

proofreading best practice is to prepare a style sheet of abbreviations, spelling,

hyphenation, capitalization, and text style so that the manuscript is consistent.

An example of parts of the style sheet prepared for this book is:

• Spelling: US (not UK) spelling, spell out and capitalize Equation (not Eq.)

when referring to a numbered equation, okay to use Eq. in an algorithm.

• Hyphens: Hyphenated as an adjective: long-term, long-range, high-quality,

multi-XX, pre-XX; hyphenated as an adjective and noun: image-to-image,

video-to-video, etc., trade-off, mini-batch, saddle-point(s), non-linear; not hy-

phenated: pseudocode, overfit, overfitting, underfit, underfitting, hyperparam-

eter, pointwise, piecewise, stepwise, elementwise, cross validation (two words).

• Capitalization and text style: the internet is lowercased unless starting a sen-

tence. Always capitalize Transformer(s), Swish, TensorFlow, and PyTorch. Use

“quasi-Newton” not “Quasi-Newton” or “Quasi Newton.”

B.2 Reviewing Best Practices

Reviewing scientific work begins by reading the paper or work and listing the

strengths and weaknesses, optionally classifying them into minor and major
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strengths and weaknesses. The reviewer may mark everything they would like

to comment on, including typos, missing references, observations, etc. A typical

conference paper review takes around 2–4 hours.

The reviewer should briefly describe the report. The reviewer should address

whether the exposition and presentation are clear and suggest how they could be

improved. Next, the reviewer should check if the references are adequate and list

any additional references that are missing. The review may involve going through

the implementation code or evaluating whether the work may be reproduced

based on the paper. The reviewer should verify that the paper discusses all the

essential details and clearly states the work’s scope and limitations.

B.2.1 Ranking

After reading the paper and optionally going through the supplementary mate-

rial, the reviewer scores the report. This includes explaining the score by dis-

cussing strengths and weaknesses. The ranking should be based on scientific

merit rather than personal opinion. The review may include suggestions for im-

provement.

B.2.2 Rebuttal

A rebuttal is part of the review process. The authors’ goal in the rebuttal is

to clarify and improve the evaluation. The goal of both the authors and the

reviewers is to help understand what can be improved, have a discussion, and

clear up any misunderstandings.

In summary, a good review process is not only fair and rigorous. It also respects

the time and effort the authors put into the work and, therefore, should be kind.
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